In triangle geometry, an inellipse is an ellipse that touches the three sides of a triangle. The simplest example is the incircle. Further important inellipses are the Steiner inellipse, which touches the triangle at the midpoints of its sides, the Mandart inellipse and Brocard inellipse (see examples section). For any triangle there exist an infinite number of inellipses.
The Steiner inellipse plays a special role: Its area is the greatest of all inellipses.
Because a non-degenerate conic section is uniquely determined by five items out of the sets of vertices and tangents, in a triangle whose three sides are given as tangents one can specify only the points of contact on two sides. The third point of contact is then uniquely determined.
The inellipse of the triangle with vertices
O=(0,0), A=(a1,a2), B=(b1,b2)
U=(u1,u2), V=(v1,v2)
OA
OB
\left(
| , | |||||||
4\xi2+4\xi+ab |
| |||||||
4\xi2+4\xi+ab |
\right) , -infty<\xi<infty ,
a,b
a= | 1 |
s-1 |
, ui=sai, b=
1 | |
t-1 |
, vi=tbi , 0<s,t<1 .
W=\left(
u1a+v1b | |
a+b+2 |
,
u2a+v2b | |
a+b+2 |
\right) .
M=
ab | |
ab-1 |
\left(
u1+v1 | , | |
2 |
u2+v2 | |
2 |
\right) .
\vec
f | ||||
|
\sqrt{ab | |
\vec
f | \sqrt{ | ||||
|
ab | |
ab-1 |
\vecx=\vec{OM}+\vecf1\cos\varphi+\vecf2\sin\varphi .
K
\overline{AV},\overline{BU},\overline{OW}
K:\left(
u1a+v1b | |
a+b+1 |
,
u2a+v2b | |
a+b+1 |
\right) .
Varying
s,t
U,V
s,t
a,b
-infty<a,b<-1
Remark: The parameters
a,b
For
s=t=\tfrac12
U,V,W
For
s=\tfrac{|OA|+|OB|-|AB|}{2|OA|}, t=\tfrac{|OA|+|OB|-|AB|}{2|OB|}
\vec{OM}= | |OB|\vec{OA |
+|OA|\vec{OB}}{|OA|+|OB|+|AB|} |
.
For
s=\tfrac{|OA|-|OB|+|AB|}{2|OA|}, t=\tfrac{-|OA|+|OB|+|AB|}{2|OB|}
For
s=\tfrac{|OB|2}{|OB|2+|AB|2} , t=\tfrac{|OA|2}{|OA|2+|AB|2}
K:(|OB|:|OA|:|AB|)
\xi
η
U,V
A=(a1,a2), B=(b1,b2)
A=[a,0],B=[0,b]
\xi | |
a |
+
η | |
b |
=1
a,b
\overline{AB}
η= | ab |
4\xi |
\overline{AB}
W=[\tfrac{a}{2},\tfrac{b}{2}]
\begin{bmatrix} u1&v1&0\\ u2&v2&0\\ 1&1&1 \end{bmatrix}
[x1,x2,x3]
\begin{bmatrix} u1&v1&0\\ u2&v2&0\\ 1&1&1 \end{bmatrix}\begin{bmatrix}x1\ x2\ x3\end{bmatrix}= \begin{pmatrix}u1x1+v1x2\ u2x1+v2x2\\ x1+x2+x3\end{pmatrix} → \left(
u1x1+v1x2 | |
x1+x2+x3 |
,
u2x1+v2x2 | |
x1+x2+x3 |
\right), ifx1+x2+x3\ne0.
A point
[\xi,η]
\xi
η
[\xi,η,1]T
[ … , … ,0]T
U: [1,0,0]T → (u1,u2) , V: [0,1,0]T → (v1,v2) ,
O: [0,0] → (0,0) , A: [a,0] → (a1,a2) , B: [0,b] → (b1,b2) ,
(One should consider:
a=\tfrac{1}{s-1}, ui=sai, b=\tfrac{1}{t-1}, vi=tbi
ginfty:\xi+η+1=0
[1,-1,0]T
[1,-1,{\color{red}0}]T → (u1-v1,u2-v
T | |
2,{\color{red}0}) |
ginfty
\xi
η
ginfty
Di:\left[
\pm\sqrt{ab | |
D1,D2
D1D2
M
M: | 1 |
2 |
ab | |
ab-1 |
\left(u1+v1,u2+v2\right) .
M
\xi
η
M: \left[
-ab | , | |
2 |
-ab | |
2 |
\right] .
D1D2
\xi
η
E1,E2
M
\xi+η+ab=0
Ei:\left[\tfrac{-ab\pm\sqrt{ab(ab-1)}}{2},\tfrac{-ab\mp\sqrt{ab(ab-1)}}{2}\right]
E | ||||
|
ab | |
ab-1 |
\left(u1+v1,u2+v2\right)\pm
1 | |
2 |
\sqrt{ab(ab-1) | |
D1D2,E1E2
\begin{align} \vecf1&
=\vec{MD | ||||
|
\sqrt{ab | |
\vecx=\vec{OM}+\vecf1\cos\varphi+\vecf2\sin\varphi .
Analogously to the case of a Steiner ellipse one can determine semiaxes, eccentricity, vertices, an equation in x-y-coordinates and the area of the inellipse.
The third touching point
W
AB
W:\left[
a | , | |
2 |
b | |
2 |
\right] → \left(
u1a+v1b | |
a+b+2 |
,
u2a+v2b | |
a+b+2 |
\right) .
The Brianchon point of the inellipse is the common point
K
\overline{AV},\overline{BU},\overline{OW}
\xi
η
\xi=a , η=b , aη-b\xi=0
K
K: [a,b] → \left(
u1a+v1b | |
a+b+1 |
,
u2a+v2b | |
a+b+1 |
\right) .
η= | ab |
4\xi |
\left[\xi,
ab | |
4\xi |
\right] → \left(
| , | |||||||
4\xi2+4\xi+ab |
| |||||||
4\xi2+4\xi+ab |
\right) , -infty<\xi<infty .
|OU|=|OV|
(1)
s|OA|=t|OB| .
(2)
(1-s)|OA|+(1-t)|OB|=|AB|
s,t
(3)
s=
|OA|+|OB|-|AB| | |
2|OA| |
, t=
|OA|+|OB|-|AB| | |
2|OB| |
.
1-
1 | |
ab |
=1-(s-1)(t-1)=-st+s+t= … =
s | |
2(|OB| |
(|OA|+|OB|+|AB|) .
\vec{OM}= | |OB| | (s\vec{OA}+t\vec{OB})= … = |
s(|OA|+|OB|+|AB|) |
|OB|\vec{OA | |
+|OA|\vec{OB}}{|OA|+|OB|+|AB|} |
.
s,t
K:(|OB|:|OA|:|AB|)
K:k1\vec{OA}+k2\vec{OB}
2}{|OB| | |
k | |
1=\tfrac{|OB| |
2+|OA|2+|AB|2},
2}{|OB| | |
k | |
2=\tfrac{|OA| |
2+|OA|2+|AB|2}
s,t
K
k1=\tfrac{s(t-1)}{st-1}, k2=\tfrac{t(s-1)}{st-1}
k1,k2
s,t
s= | |OB|2 |
|OB|2+|AB|2 |
, t=
|OA|2 | |
|OA|2+|AB|2 |
.
\vecf1,\vecf2
F=\pi\left|\det(\vecf1,\vecf2)\right|
For the inellipse with parameters
s,t
\det(\vecf1,\vec
f | ||||
|
ab | |
(ab-1)3/2 |
\det(s\veca+t\vecb,s\veca-t\vecb)
= | 1 |
2 |
s\sqrt{s-1 | |
t\sqrt{t-1}}{(1-(s-1)(t-1)) |
3/2
\veca=(a1,a2), \vecb=(b1,b2), \vecu=(u1,u2),\vecv=(v1,v2), \vecu=s\veca, \vecv=t\vecb
G(s,t)=\tfrac{s2(s-1) t2(t-1)}{(1-(s-1)(t-1))3}
Gs=0 → 3s-2+2(s-1)(t-1)=0 .
G(s,t)=G(t,s)
Gt=0 → 3t-2+2(s-1)(t-1)=0 .
s=t= | 1 |
2 |
,