Indirect calorimetry calculates heat that living organisms produce by measuring either their production of carbon dioxide and nitrogen waste (frequently ammonia in aquatic organisms, or urea in terrestrial ones), or from their consumption of oxygen. Indirect calorimetry estimates the type and rate of substrate utilization and energy metabolism in vivo starting from gas exchange measurements (oxygen consumption and carbon dioxide production during rest and steady-state exercise). This technique provides unique information, is noninvasive, and can be advantageously combined with other experimental methods to investigate numerous aspects of nutrient assimilation, thermogenesis, the energetics of physical exercise, and the pathogenesis of metabolic diseases.[1]
Indirect calorimetry measures O2 and nitrogen consumption and CO2 production. On the assumption that all the oxygen is used to oxidize degradable fuels and all the CO2 thereby evolved is recovered, it is possible to estimate the total amount of energy produced from the chemical energy of nutrients and converted into the chemical energy of ATP, with some loss of energy during the oxidation process.[1] Respiratory indirect calorimetry (IC) is a noninvasive and highly accurate method of metabolic rate, which has an error of less than 1%.[2] It has high reproducibility and has been considered a gold standard method.[3] This method allows estimating BEE and REE as well as identification of energy substrates that are predominantly metabolized by the body at a specific moment. It is based on the indirect measurement of the heat produced by oxidation of macronutrients, which is estimated by monitoring O2 consumption and CO2 production for a certain period of time.[4] The calorimeter has a gas collector that adapts to the subject and through a unidirectional valve minute by minute collects and quantifies the volume and concentration of O2 inspired and CO2 expired by the subject. After a volume is met, Resting Energy Expenditure is calculated by the Weir formula and results are displayed in software attached to the system.[4] Another formula used is:[5]
M=VO | ||||
|
e | ||||
|
ef\right)
ec
ef
Antoine Lavoisier noted in 1780 that heat production, in some cases, can be predicted from oxygen consumption, using multiple regression. Indirect calorimetry, as we know it, was developed around 1900 as an application of thermodynamics to animal life.[6] Although the development of indirect calorimetry dates back over 200 years, its greatest use has been in the last two decades with the development of total parenteral nutrition, interdisciplinary nutrition support teams, and the production of portable, reliable, relatively inexpensive calorimeters.[7]
Four different gas collection and measurement techniques can be used to perform this test:
Indirect calorimetry provides at least two pieces of information: a measure of energy expenditure or 24-hour caloric requirements as reflected by the Resting Energy Expenditure (REE) and a measure of substrate utilization as reflected in the Respiratory Quotient (RQ). Knowledge of the many factors that affect these values has led to a much broader range of applications. Studies of indirect calorimetry over the past 20 years have led to the characterization of the hypermetabolic stress response to injury and the design of nutritional regimens whose substrates are most efficiently assimilated in different disease processes and organ failure states. Indirect calorimetry has influenced everyday practices of medical and surgical care, such as the warming of burn unit and surgical suites and the weaning of patients from ventilators.[7]