In mathematics, the indefinite product operator is the inverse operator of . It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.
Thus
Q\left(\prodxf(x)\right)=f(x).
More explicitly, if , then
F(x+1) | |
F(x) |
=f(x).
If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.
If
T
f(x)
\prodxf(Tx)=Cf(Tx)x-1
Indefinite product can be expressed in terms of indefinite sum:
\prodxf(x)=\exp\left(\sumxlnf(x)\right)
Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[1] e.g.
n | |
\prod | |
k=1 |
f(k)
\prodxf(x)g(x)=\prodxf(x)\prodxg(x)
\prodxf(x)a=\left(\prodxf(x)\right)a
\prodxaf(x)=
\sumxf(x) | |
a |
This is a list of indefinite products . Not all functions have an indefinite product which can be expressed in elementary functions.
\prodxa=Cax
\prodxx=C\Gamma(x)
\prodx
x+1 | |
x |
=Cx
\prodx
x+a | |
x |
=
C\Gamma(x+a) | |
\Gamma(x) |
\prodxxa=C\Gamma(x)a
\prodxax=Cax\Gamma(x)
\prodxax=C
| |||||
a |
\prodx
| ||||
a |
=C
| ||||
a |
\prodxxx=C
\zeta\prime(-1,x)-\zeta\prime(-1) | |
e |
=
| |||||||||||||
Ce |
=C\operatorname{K}(x)
(see K-function)
\prodx\Gamma(x)=
C\Gamma(x)x-1 | |
\operatorname{K |
(x)}=C\Gamma(x)x-1
| ||||||||
e |
=C\operatorname{G}(x)
(see Barnes G-function)
\prodx\operatorname{sexp}a(x)=
C(\operatorname{sexp | |
a |
(x))'}{\operatorname{sexp}a(x)(lna)x}
(see super-exponential function)
\prodxx+a=C\Gamma(x+a)
\prodxax+b=Cax\Gamma\left(x+
b | |
a |
\right)
\prodxax2+bx=Cax\Gamma(x)\Gamma\left(x+
b | |
a |
\right)
\prodxx2+1=C\Gamma(x-i)\Gamma(x+i)
\prodxx+
1 | |
x |
=
C\Gamma(x-i)\Gamma(x+i) | |
\Gamma(x) |
\prodx\cscx\sin(x+1)=C\sinx
\prodx\secx\cos(x+1)=C\cosx
\prodx\cotx\tan(x+1)=C\tanx
\prodx\tanx\cot(x+1)=C\cotx