Indefinite product explained

In mathematics, the indefinite product operator is the inverse operator of Q(f(x)) = \frac. It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.

Thus

Q\left(\prodxf(x)\right)=f(x).

More explicitly, if \prod_x f(x) = F(x) , then

F(x+1)
F(x)

=f(x).

If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.

Period rule

If

T

is a period of function

f(x)

then

\prodxf(Tx)=Cf(Tx)x-1

Connection to indefinite sum

Indefinite product can be expressed in terms of indefinite sum:

\prodxf(x)=\exp\left(\sumxlnf(x)\right)

Alternative usage

Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[1] e.g.

n
\prod
k=1

f(k)

.

Rules

\prodxf(x)g(x)=\prodxf(x)\prodxg(x)

\prodxf(x)a=\left(\prodxf(x)\right)a

\prodxaf(x)=

\sumxf(x)
a

List of indefinite products

This is a list of indefinite products \prod _x f(x) . Not all functions have an indefinite product which can be expressed in elementary functions.

\prodxa=Cax

\prodxx=C\Gamma(x)

\prodx

x+1
x

=Cx

\prodx

x+a
x

=

C\Gamma(x+a)
\Gamma(x)

\prodxxa=C\Gamma(x)a

\prodxax=Cax\Gamma(x)

\prodxax=C

x(x-1)
2
a

\prodx

1
x
a

=C

\Gamma'(x)
\Gamma(x)
a

\prodxxx=C

\zeta\prime(-1,x)-\zeta\prime(-1)
e

=

(-2)
\psi
(z)+z2-z
2
-z2
ln
(2\pi)
Ce

=C\operatorname{K}(x)

(see K-function)

\prodx\Gamma(x)=

C\Gamma(x)x-1
\operatorname{K

(x)}=C\Gamma(x)x-1

z2
(2\pi)-z2-z
2
-\psi(-2)(z)
ln
e

=C\operatorname{G}(x)

(see Barnes G-function)

\prodx\operatorname{sexp}a(x)=

C(\operatorname{sexp
a

(x))'}{\operatorname{sexp}a(x)(lna)x}

(see super-exponential function)

\prodxx+a=C\Gamma(x+a)

\prodxax+b=Cax\Gamma\left(x+

b
a

\right)

\prodxax2+bx=Cax\Gamma(x)\Gamma\left(x+

b
a

\right)

\prodxx2+1=C\Gamma(x-i)\Gamma(x+i)

\prodxx+

1
x

=

C\Gamma(x-i)\Gamma(x+i)
\Gamma(x)

\prodx\cscx\sin(x+1)=C\sinx

\prodx\secx\cos(x+1)=C\cosx

\prodx\cotx\tan(x+1)=C\tanx

\prodx\tanx\cot(x+1)=C\cotx

See also

Further reading

External links

Notes and References

  1. http://www.risc.uni-linz.ac.at/people/mkauers/publications/kauers05c.pdf Algorithms for Nonlinear Higher Order Difference Equations