Imprecise Dirichlet process explained
In probability theory and statistics, the Dirichlet process (DP) is one of the most popular Bayesian nonparametric models. It wasintroduced by Thomas Ferguson[1] as a prior over probability distributions.
is completely defined by its parameters:
(the
base distribution or
base measure) is an arbitrary distribution and
(the
concentration parameter) is a positive real number (it is often denoted as
).According to the Bayesian paradigm these parameters should be chosen based on the available prior information on the domain.
The question is: how should we choose the prior parameters
of the DP, in particular the infinite dimensional one
, in case of lack of prior information?
To address this issue, the only prior that has been proposed so far is the limiting DP obtained for
, which has been introduced underthe name of
Bayesian bootstrap by Rubin;
[2] in fact it can be proven that the Bayesian bootstrap is asymptotically equivalent to the frequentist bootstrap introduced by
Bradley Efron.
[3] The limiting Dirichlet process
has been criticized on diverse grounds. From an a-priori point of view, the maincriticism is that taking
is far from leading to a noninformative prior.
[4] Moreover, a-posteriori, it assigns zero probability to any set that does not include the observations.
[2] The imprecise Dirichlet[5] process has been proposed to overcome these issues. The basic idea is to fix
but do not choose any precise base measure
.
More precisely, the imprecise Dirichlet process (IDP) is defined as follows:
~~IDP:~\left\{DP\left(s,G0\right):~~G0\inP\right\}
where
is the set of all probability measures. In other words, the IDP is the set of all Dirichlet processes (with a fixed
) obtainedby letting the base measure
to span the set of all probability measures.
Inferences with the Imprecise Dirichlet Process
Let
a probability distribution on
(here
is a standard
Borel space with Borel
-field
) and assume that
.Then consider a real-valued bounded function
defined on
. It is well known that the expectation of
with respect to the Dirichlet process is
l{E}[E(f)]=l{E}\left[\intfdP\right]=\intfdl{E}[P]=\intfdG0.
One of the most remarkable properties of the DP priors is that the posterior distribution of
is again a DP.Let
be an independent and identically distributed sample from
and
, then the posterior distribution of
given the observations is
P\midX1,...,Xn\simDp\left(s+n,Gn\right),~~~with~~~~~~
G0+
,
where
is an atomic probability measure (Dirac's delta) centered at
. Hence, it followsthat
l{E}[E(f)\midX1,...,Xn]=\intfdGn.
Therefore, for any fixed
, we can exploit the previous equations to derive prior and posterior expectations.
In the IDP
can span the set of all distributions
. This implies that we will get a different prior and posterior expectation of
for any choice of
. A way to characterize inferences for the
IDP is by computing lower and upper bounds for the expectation of
w.r.t.
.A-priori these bounds are:
\underline{l{E}}[E(f)]=inf\limits | |
| G0\inP |
\intfdG0=inff,
~~~~\overline{l{E}}[E(f)]=\sup\limits | |
| G0\inP |
\intfdG0=\supf,
the lower (upper) bound is obtained by a probability measure that puts all the mass on the infimum (supremum) of
, i.e.,
with
(or respectively with
). From the above expressions of the lower and upper bounds, it can be observed that the range of
under the
IDP is the same as the original
range of
. In other words, by specifying the IDP, we are not giving any prior information on the value of the expectation of
. A-priori,
IDP is therefore a model of prior (near)-ignorance for
.
A-posteriori, IDP can learn from data. The posterior lower and upper bounds for the expectation of
are in fact given by:
\begin{align}
\underline{l{E}}[E(f)\midX1,...,Xn]&=
\intfdGn=
inff+\intf(X)
(dX)\\
&=
inff+
,\\[6pt]
\overline{l{E}}[E(f)\midX1,...,Xn]&=\sup\limits
\intfdGn=
\supf+\intf(X)
(dX)\\
&=
\supf+
.
\end{align}
It can be observed that the posterior inferences do not depend on
. To define the IDP, the modeler has only to choose
(the concentration parameter). This explains the meaning of the adjective
near in prior near-ignorance, because the IDP requires by the modeller the elicitation of a parameter. However, this is a simple elicitation problem for a nonparametric prior, since we only have to choose the value of a positive scalar (there are not infinitely many parameters left in the IDP model).
Finally, observe that for
, IDP satisfies
\underline{l{E}}\left[E(f)\midX1,...,Xn\right], \overline{l{E}}\left[E(f)\midX1,...,Xn\right] → S(f),
where
. In other words, the IDP is consistent.
Choice of the prior strength
The IDP is completely specified by
, which is the only parameter left in the prior model.Since the value of
determines how quickly lower and upper posterior expectations converge at theincrease of the number of observations,
can be chosen so to match a certain convergence rate.
[5] The parameter
can also be chosen to have some desirable frequentist properties (e.g., credible intervals to becalibrated frequentist intervals, hypothesis tests to be calibrated for the Type I error, etc.), see Example: median test
Example: estimate of the cumulative distribution
Let
be i.i.d. real random variables with
cumulative distribution function
.
Since
, where
is the
indicator function, we can useIDP to derive inferences about
The lower and upper posterior mean of
are
\begin{align}
&\underline{l{E}}\left[F(x)\midX1,...,Xn\right]=\underline{l{E}}[E(I(infty,x])\midX1,...,Xn]\\
={}&
| | n | | \sum\limits | | I(infty,x](Xi) | | i=1 | |
| = |
n |
\hat{F}(x),\\[12pt]
&\overline{l{E}}\left[F(x)\midX1,...,Xn\right]=\overline{l{E}}\left[E(I(infty,x])\midX1,...,Xn\right]\\
={}&
+
| | n | | \sum\limits | | I(infty,x](Xi) | | i=1 | |
|
n |
=
+
\hat{F}(x).
\end{align}
where
is the
empirical distribution function. Here, to obtain the lower we have exploited the fact that
and for the upper that
.
Note that, for any precise choice of
(e.g., normal distribution
), the posterior expectation of
will be included between the lower and upper bound.
Example: median test
IDP can also be used for hypothesis testing, for instance to test the hypothesis
, i.e., the median of
is greater than zero.By considering the partition
and the property of the Dirichlet process, it can be shown thatthe posterior distribution of
is
F(0)\simBeta(\alpha0+n<0,\beta0+n-n<0)
where
is the number of observations that are less than zero,
and
By exploiting this property, it follows that
\underline{l{P}}[F(0)<0.5\midX1,...,Xn]=
Beta(\theta;s+n<0,n-n<0)d\theta=I1/2(s+n<0,n-n<0),
\overline{l{P}}[F(0)<0.5\midX1,...,Xn]=\int\limits
Beta(\theta;n<0,s+n-n<0)d\theta=I1/2(n<0,s+n-n<0).
where
is the
regularized incomplete beta function.We can thus perform the hypothesis test
\underline{l{P}}[F(0)<0.5\midX1,...,Xn]>1-\gamma,~~\overline{l{P}}[F(0)<0.5\midX1,...,Xn]>1-\gamma,
(with
for instance) and then
- if both the inequalities are satisfied we can declare that
with probability larger than
;
- if only one of the inequality is satisfied (which has necessarily to be the one for the upper), we are in an indeterminate situation, i.e., we cannot decide;
- if both are not satisfied, we can declare that the probability that
is lower than the desired probability of
.
IDP returns an indeterminate decision when the decision is prior dependent (that is when it would depend on the choice of
).
By exploiting the relationship between the cumulative distribution function of the Beta distribution, and the cumulative distribution function of a random variable Z from a binomial distribution, where the "probability of success" is p and the sample size is n:
F(k;n,p)=\Pr(Z\lek)=I1-p(n-k,k+1)=1-Ip(k+1,n-k),
we can show that the median test derived with th IDP for any choice of
encompasses the one-sided frequentistsign test as a test for the median. It can in fact be verified that for
the
-value of the sign test is equal to
1-\underline{l{P}}[F(0)<0.5\midX1,...,Xn]
. Thus, if
\underline{l{P}}[F(0)<0.5\midX1,...,Xn]>0.95
then the
-value is less than
and, thus, they two tests have the same power.
Applications of the Imprecise Dirichlet Process
Dirichlet processes are frequently used in Bayesian nonparametric statistics. The Imprecise Dirichlet Processcan be employed instead of the Dirichlet processes in any application in which prior information is lacking (it is therefore important to model this state of prior ignorance).
In this respect, the Imprecise Dirichlet Process has been used for nonparametric hypothesis testing, see the Imprecise Dirichlet Process statistical package.Based on the Imprecise Dirichlet Process, Bayesian nonparametric near-ignorance versions of the following classical nonparametric estimators have been derived: the Wilcoxon rank sum test[5] and the Wilcoxon signed-rank test.[6]
A Bayesian nonparametric near-ignorance model presents several advantages with respect to a traditional approach to hypothesis testing.
- The Bayesian approach allows us to formulate the hypothesis test as a decision problem. This means that we can verify the evidence in favor of the null hypothesis and not only rejecting it and take decisions which minimize the expected loss.
- Because of the nonparametric prior near-ignorance, IDP based tests allows us to start the hypothesis test with very weak prior assumptions, much in the direction of letting data speak for themselves.
- Although the IDP test shares several similarities with a standard Bayesian approach, at the same time it embodies a significant change of paradigm when it comes to take decisions. In fact the IDP based tests have the advantage of producing an indeterminate outcome when the decision is prior-dependent. In other words, the IDP test suspends the judgment when the option which minimizes the expected loss changes depending on the Dirichlet Process base measure we focus on.
- It has been empirically verified that when the IDP test is indeterminate, the frequentist tests are virtually behaving as random guessers. This surprising result has practical consequences in hypothesis testing. Assume that we are trying to compare the effects of two medical treatments (Y is better than X) and that, given the available data, the IDP test is indeterminate. In such a situation the frequentist test always issues a determinate response (for instance I can tell that Y is better than X), but it turns out that its response is completely random, like if we were tossing of a coin. On the other side, the IDP test acknowledges the impossibility of making a decision in these cases. Thus, by saying "I do not know", the IDP test provides a richer information to the analyst. The analyst could for instance use this information to collect more data.
Categorical variables
For categorical variables, i.e., when
has a finite number of elements, it is known thatthe Dirichlet process reduces to a
Dirichlet distribution.In this case, the Imprecise Dirichlet Process reduces to the Imprecise Dirichlet model proposed by Walley
[7] as a model for prior (near)-ignorance for chances.
See also
Imprecise probability
Robust Bayesian analysis
External links
Notes and References
- Ferguson . Thomas . Thomas Ferguson (statistician) . Bayesian analysis of some nonparametric problems . . 1 . 2 . 209 - 230 . 1973 . 10.1214/aos/1176342360 . 350949 . free .
- Rubin D (1981). The Bayesian bootstrap. Ann. Stat. 9 130–134
- Efron B (1979). Bootstrap methods: Another look at the jackknife. Ann. Stat. 7 1–26
- Sethuraman. J.. Tiwari. R. C.. Convergence of Dirichlet measures and the interpretation of their parameter. Defense Technical Information Center. 1981.
- Benavoli. Alessio. Mangili. Francesca. Ruggeri. Fabrizio. Zaffalon. Marco. Imprecise Dirichlet Process with application to the hypothesis test on the probability that X< Y. 1402.2755. math.ST. 2014.
- Benavoli. Alessio. Mangili. Francesca. Corani. Giorgio. Ruggeri. Fabrizio. Zaffalon. Marco. A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. Proceedings of the 30th International Conference on Machine Learning (ICML 2014). 2014.
- Book: Walley
, Peter
. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall. 1991. London. 0-412-28660-2 .