Pesticide toxicity to bees explained
Pesticides vary in their effects on bees. Contact pesticides are usually sprayed on plants and can kill bees when they crawl over sprayed surfaces of plants or other areas around it. Systemic pesticides, on the other hand, are usually incorporated into the soil or onto seeds and move up into the stem, leaves, nectar, and pollen of plants.[1] [2]
Of contact pesticides, dust and wettable powder pesticides tend to be more hazardous to bees than solutions or emulsifiable concentrates. When a bee comes in contact with pesticides while foraging, the bee may die immediately without returning to the hive. In this case, the queen bee, brood, and nurse bees are not contaminated and the colony survives. Alternatively, the bee may come into contact with an insecticide and transport it back to the colony in contaminated pollen or nectar or on its body, potentially causing widespread colony death.[3]
Actual damage to bee populations is a function of toxicity and exposure of the compound, in combination with the mode of application. A systemic pesticide, which is incorporated into the soil or coated on seeds, may kill soil-dwelling insects, such as grubs or mole crickets as well as other insects, including bees, that are exposed to the leaves, fruits, pollen, and nectar of the treated plants.[4]
Pesticides, especially neonicotinoids, have been investigated in relation to risks for bees such as Colony Collapse Disorder. A 2018 review by the European Food Safety Authority (EFSA) concluded that most uses of neonicotinoid pesticides such as clothianidin represent a risk to wild bees and honeybees.[5] [6] Neonicotinoids have been banned for all outdoor use in the entire European Union since 2018, but has a conditional approval in the U.S. and other parts of the world, where it is widely used.[7] [8]
Classification
Insecticide toxicity is generally measured using acute contact toxicity values – the exposure level that causes 50% of the population exposed to die. Toxicity thresholds are generally set at[9]
- highly toxic (acute LD50 < 2μg/bee)
- moderately toxic (acute LD50 2 – 10.99 μg/bee)
- slightly toxic (acute LD50 11 – 100 μg/bee)
- nontoxic (acute LD50 > 100 μg/bee) to adult bees.
Pesticide toxicity
Acute toxicity
The acute toxicity of pesticides on bees, which could be by contact or ingestion, is usually quantified by . Acute toxicity of pesticides causes a range of effects on bees, which can include agitation, vomiting, wing paralysis, arching of the abdomen similar to sting reflex, and uncoordinated movement. Acute toxicity may depend on the mode of exposure, for instance, many pesticides cause toxic effects by contact while neonicotinoids are more toxic when consumed orally.[10] The acute toxicity, although more lethal, is less common than sub-lethal toxicity or cumulative effects.[11]
Sublethal and chronic effects
Field exposure to pesticides, especially with relation to neonicotinoids,[12] may lead to multiple physiological and/or behavioral sublethal effects in exposed bees.[13] Sublethal effects to honey bees can include disruptions to behavioral and motor functions, compromised immunity, and delayed development.[14] [15] [16]
Colony collapse disorder
See main article: Colony collapse disorder.
Colony collapse disorder (CCD) is a syndrome that is characterized by the sudden loss of adult bees from the hive. Many possible explanations for it have been proposed, but no one primary cause has been found. The US Department of Agriculture indicated in a 2010 report to Congress that a combination of factors could be causing colony collapse disorder, including pesticides, pathogens, and parasites. Although pesticides were suspected to be part of the problem, a surveyof healthy and CCD-affected colonies revealed similar levels of pesticides in wax and pollen.[17]
Bee kill rate per hive
The kill rate of bees in a single bee hive can be classified as:[18]
< 100 bees per day – normal die off rate
200–400 bees per day – low kill
500–900 bees per day – moderate kill
1000+ bees per day – high kill
Pesticide formulations
Pesticides come in different formulations:[3]
- Dusts (D)
- Wettable powders (WP)
- Soluble powders (SP)
- Emulsifiable concentrates (EC)
- Solutions (LS)
- Granulars (G)
Pesticides
All substances listed are insecticides, except for 2,4-D, which is an herbicide. Some substances are arachnicides too.
Common name (ISO) | Examples of Brand names | Pesticide Class | length of residual toxicity | Comments | Bee toxicity |
---|
Aldicarb | | Carbamate | | apply 4 weeks before bloom | Relatively nontoxic |
Carbaryl[19] | Sevin, (b) Sevin XLR | Carbamate | High risk to beesforaging even 10 hoursafter spraying; 3 – 7 days (b) 8 hours @ 1.5 lb/acre (1681 g/Ha) or less. | Bees poisoned with carbaryl can take 2–3 days to die, appearing inactive as if cold. Sevin should never be sprayed on flowering crops, especially if bees are active and the crop requires pollination. Less toxic formulations exist. | Highly toxic |
Carbofuran[20] | Furadan | Carbamate | 7 – 14 days | U.S. Environmental Protection Agency ban on use on crops grown for human consumption (2009) carbofuran (banned in granular form) | Highly toxic |
Methomyl[21] | Lannate, Nudrin | Carbamate | 2 hours | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Methiocarb | Mesurol | Carbamate | | | Highly toxic |
Mexacarbate[22] | Zectran | Carbamate | | | Highly toxic |
Pirimicarb | Pirimor, Aphox | Carbamate | | | Relatively nontoxic |
Propoxur[23] | | Carbamate | | Propoxur is highly toxic to honey bees. The LD50 for bees is greater than one ug/honey bee. | Highly toxic |
Acephate[24] | Orthene | Organophosphate | 3 days | Acephate is a broad-spectrum insecticide and is highly toxic to bees and other beneficial insects.[25] | Moderately toxic |
Azinphos-methyl[26] | Guthion, Methyl-Guthion | Organophosphate | 2.5 days | Banned in EU since 2006.[27] | Highly toxic |
Chlorpyrifos[28] | Dursban, Lorsban | Organophosphate | | Banned in US for home and garden use. Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Coumaphos[29] | Checkmite | Organophosphate | | This is an insecticide that is used inside the beehive to combat varroa mites and small hive beetles, which are parasites of the honey bee. Overdoses can lead to bee poisoning. | Relatively nontoxic |
Demeton | Systox | Organophosphate | <2 hours | | Highly toxic |
Demeton-S-methyl[30] | Meta-systox | Organophosphate | | Banned worldwide for toxicity to humans | Moderately toxic |
Diazinon[31] | Spectracide | Organophosphate | | Sale of diazinon for residential use was discontinued in the U.S. in 2004. Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Dicrotophos[32] | Bidrin | Organophosphate | | Dicrotophos toxicity duration is about one week.[33] | highly toxic |
Dichlorvos[34] | DDVP, Vapona | Organophosphate | | | Highly toxic |
Dimethoate[35] | Cygon, De-Fend | Organophosphate | 3 days | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Fenthion[36] | Entex, Baytex, Baycid, Dalf, DMPT, Mercaptophos, Prentox, Fenthion 4E, Queletox, Lebaycid | Organophosphate | | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Fenitrothion[37] | Sumithion | Organophosphate | | | Highly toxic |
Fensulfothion | Dasanit | Organophosphate | | | Highly toxic |
Fonofos[38] | Dyfonate EC | Organophosphate | 3 hours | List of Schedule 2 substances (CWC) | Highly toxic |
| Malathion USB, ~ EC, Cythion, maldison, mercaptothion | Organophosphate | >8 fl oz/acre (58 L/km2) ⇒ 5.5 days | Malathion is highly toxic to bees and other beneficial insects, some fish, and other aquatic life. Malathion is moderately toxic to other fish and birds, and is considered low in toxicity to mammals.[39] | Highly toxic |
Methamidophos[40] | Monitor, Tameron | Organophosphate | | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Methidathion[41] | Supracide | Organophosphate | | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Methyl parathion | Parathion,[42] Penncap-M | Organophosphate | 5–8 days | It is classified as a UNEP persistent organic pollutant and WHO Toxicity Class, "Ia, Extremely Hazardous". | Highly toxic |
Mevinphos[43] | Phosdrin | Organophosphate | | | highly toxic |
Monocrotophos[44] | Azodrin | Organophosphate | | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Naled[45] | Dibrom | Organophosphate | 16 hours | | Highly toxic |
Omethoate | | Organophosphate | | Should never be sprayed on flowering crops especially if bees are active and the crop requires pollination. | Highly toxic |
Oxydemeton-methyl[46] | Metasystox-R | Organophosphate | <2 hours | | Highly toxic |
Phorate[47] | Thimet EC | Organophosphate | 5 hours | | Highly toxic |
Phosmet[48] | Imidan | Organophosphate | | Phosmet is very toxic to honeybees.[49] | Highly toxic |
| Dimecron | Organophosphate | | | Highly toxic |
Pyrazophos | Afugan | Organophosphate | Fungicide | | Highly toxic |
Tetrachlorvinphos | Rabon, Stirofos, Gardona, Gardcide | Organophosphate | | | Highly toxic |
Trichlorfon, Metrifonate | Dylox, Dipterex | Organophosphate | | 3 – 6 hours | Relatively nontoxic |
Bifenthrin[50] | Agri-Medk, Abamectin, Talstar, Bifenthrine, Brigade, Capture, FMC 54800, OMS3024, Torant (with Clofentezine), and Zipak (with Amitraz)[51] | Pyrethroid | < 1 day RT> 1 day ERT | | Highly toxic |
Permethrin[52] | Ambush, Pounce | Pyrethroid | 1 – 2 days | Safened by repellency under arid conditions. Permethrin is also the active ingredient in insecticides used against the Small hive beetle, which is a parasite of the beehive in the temperate climate regions. | Highly toxic |
Cypermethrin[53] | Ammo, Demon, Raid, Viper | Pyrethroid | Less than 2 hours | Cypermethrin is found in many household ant and cockroach killers, including Raid and ant chalk. | Highly toxic |
Fenvalerate[54] | Asana, Pydrin | Pyrethroid | 1 day | Safened by repellency under arid conditions | Highly toxic |
Resmethrin[55] [56] [57] | Black Flag Mosquito Fog Solution, Chrysron, Crossfire, Pynosect, Raid Flying Insect Killer, Scourge, Sun-Bugger #4, SPB-1382, Synthrin, Syntox, Vectrin, Whitmire PT-110 | Pyrethroid | | Resmethrin is highly toxic to bees, with an LD50 of 0.063 ug/bee. | Highly toxic |
Methoxychlor[58] | DMDT, Marlate | Chlorinated cyclodiene | 2 hours | | Highly toxic |
Endosulfan[59] | Thiodan | Chlorinated cyclodiene | 8 hours | Banned in EU (2007?), Banned in NZ (2009) | Moderately toxic |
Clothianidin | Poncho | Neonicotinoid | | Banned in EU for outdoor use since 2018. | Highly Toxic[60] |
Thiamethoxam | Actara | Neonicotinoid | | Banned in EU for outdoor use since 2018. | Highly Toxic |
| Confidor, Gaucho, Kohinor, Admire, Advantage, K9 Advantix, Merit, Confidor, Hachikusan, Amigo, SeedPlus (Chemtura Corp.), Monceren GT, Premise, Prothor, Winner | Neonicotinoid | | Banned in France since 1999. Banned in EU for outdoor use since 2018. | Highly toxic |
| Regent, Goliath, Nexa, Adonis, Termidor, Ultrathor, Fipforce, Taurus, Combat Ant-Rid, Anthem, Clearout, Radiate | Phenylpyrazole | | Banned in EU for use on maize and sunflowers since 2014. | Highly toxic |
Sulfoxaflor | | Sulfoximine | | [61] [62] |
Dicofol | | Acaricide | | | Relatively nontoxic |
Petroleum oils | | | | | Relatively nontoxic |
2,4-D[63] | Weed B Gon (also contains dicamba), ingredient in over 1,500 products | Synthetic auxin herbicide | | | Relatively nontoxic | |
Highly toxic and banned in the US
Regulatory policy
Based on a risks to bee health as identified by the European Food Safety Authority (EFSA), in April 2013 the EU decided to restrict the use of the neonicotinoids thiamethoxam, clothianidin, and imidacloprid.[69] Fipronil was also banned for use on maize and sunflowers.[70]
In 2015, the US Environmental Protection Agency (EPA) proposed to prohibit the application of certain pesticides and herbicides that are known to be toxic to bees during pollination periods when crops are in bloom. Seed treatments were not considered to present a risk to bee health. A modified form of these proposals was adopted as EPA policy in January 2017.[71]
In April 2018, member states of the European Union agreed upon a total ban on neonicotinoid insecticide use, except within closed greenhouses.[72] The vote on the proposed ban followed a February 2018 report from the EFSA which concluded that neonicotinoids posed a high risk to both domestic and wild bees.[73] The ban had strong public support, but faced criticism from the agrochemical industry, and from certain farmers' groups.[74]
In 2020, the EPA supplemented its policy with a proposal to restrict the use of neonicotinoids on residential lawns and turf, but otherwise confirmed that they would remain in use in the US.[75]
General measures to prevent pesticide bee kills
Application of pesticides at evening or night
Avoiding the application of pesticides directly to blooming flowers can help limit the exposure of honeybees to toxic materials. If blooming flowers must be sprayed with pesticides for any reason, they should be sprayed in the evening or night hours when bees are not in the field. The usual foraging hours of honeybees are during the daytime when the temperature is above .[3]
See also
External links
- Web site: https://web.archive.org/web/20070311051931/http://maarec.cas.psu.edu/bees_pesticides.html. 11 March 2007. Honey Bees and Pesticides. 1978. Mid-Atlantic Apiculture Research and Extension Consortium. 23 July 2021.
- Web site: How to Reduce Bee Poisoning from Pesticides. 2016. 23 July 2021. Oregon State University. Hooven L, Sagili R, Johansen E.
- Web site: Mayer DF, Johansen CA, Baird CR. https://web.archive.org/web/20070204053751/http://cru.cahe.wsu.edu/CEPublications/pnw0518/pnw0518.pdf. How to Reduce Bee Poisoning from Pesticides. 4 February 2007. Washington State University. 1999. 23 July 2021.
- Web site: Protecting Honeybees From Pesticides. McBride DK. 1997. North Dakota State University. 23 July 2021. 7 September 2006. https://web.archive.org/web/20060907103050/http://ndsuext.nodak.edu/extpubs/plantsci/pests/e494w.htm#highly. live.
- Web site: Sanford MT. Protecting Honey Bees From Pesticides. 1993. University of Florida. 2005-01-29. 2021-01-13. https://web.archive.org/web/20210113135056/https://edis.ifas.ufl.edu/aa145. dead.
- Web site: Protecting honey bees from pesticides. 23 July 2021. 2021. University of Purdue. Krupke CH, Hunt G, Foster RE. 24 July 2021. https://web.archive.org/web/20210724003054/https://extension.entm.purdue.edu/publications/E-53.pdf. live.
- Web site: Protecting Bees When Using Insecticides. https://web.archive.org/web/20050208184708/http://ianrpubs.unl.edu/insects/g1347.htm. 8 February 2005. University of Nebraska Lincoln, Extension. 1998. Ellis MD, Baxendale FP, Keith DL. 23 July 2021.
- US EPA Pesticide Registration (PR) Notice 2001-5
- Bee Health: Background and Issues for Congress Congressional Research Service
- Bee Health: The Role of Pesticides Congressional Research Service
- Web site: The Xerces Society for Invertebrate Conservation . July 24, 2021 . October 14, 2014 . https://web.archive.org/web/20141014141149/http://www.xerces.org/ . live .
Notes and References
- Web site: Ministry of Agriculture . 2011-02-20 . 2015-12-18 . https://web.archive.org/web/20151218192307/http://www.agf.gov.bc.ca/pesticides/a_3.htm . dead .
- Zioga . Elena . Kelly . Ruth . White . Blánaid . Stout . Jane C. . October 2020 . Plant protection product residues in plant pollen and nectar: A review of current knowledge . 10.1016/j.envres.2020.109873 . Environmental Research . 189 . 109873 . 0013-9351. free . 2262/95794 . free .
- Web site: Protecting Pollinators from Pesticides – Bees, Beekeeping & Protecting Pollinators . Honey Bee Program . July 24, 2021 . August 31, 2021 . https://web.archive.org/web/20210831150917/https://bees.caes.uga.edu/bees-beekeeping-pollination/pollination/pollination-protecting-pollinators-from-pesticides.html . live .
- Book: Pollination Biology: Biodiversity Conservation and Agricultural Production. 9789400719422. Abrol. Dharam P.. 5 October 2011. Springer.
- Web site: 2018-02-28 . Neonicotinoids: risks to bees confirmed EFSA . 2023-06-23 . www.efsa.europa.eu . en . 2023-06-06 . https://web.archive.org/web/20230606004028/https://www.efsa.europa.eu/en/press/news/180228 . live .
- Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin . 10.2903/j.efsa.2013.3066 . EFSA Journal . 2013 . 11 . 3066 . 2024-07-12 . 2022-03-06 . https://web.archive.org/web/20220306205250/https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2013.3066 . live .
- News: Carrington . Damian . 2018-04-27 . EU agrees total ban on bee-harming pesticides . en-GB . The Guardian . 2023-06-23 . 0261-3077 . 2024-01-29 . https://web.archive.org/web/20240129200618/https://www.theguardian.com/environment/2018/apr/27/eu-agrees-total-ban-on-bee-harming-pesticides . live .
- News: Milman . Oliver . 2022-03-08 . Fears for bees as US set to extend use of toxic pesticides that paralyse insects . en-GB . The Guardian . 2023-06-23 . 0261-3077.
- http://www.agr.wa.gov/pestfert/Pesticides/docs/PollinatorSLNSect18.pdf Pollinator protection requirements for Section 18 Emergency Exemptions and Section 24(c) special local need registration in Washington State; Registration Services Program Pesticide Management Division Washington State Dept of Agriculture, Dec 2006
- Hladik . Michelle L. . Main . Anson R. . Goulson . Dave . 2018-03-20 . Environmental Risks and Challenges Associated with Neonicotinoid Insecticides . Environmental Science & Technology . 52 . 6 . 3329–3335 . 10.1021/acs.est.7b06388 . 29481746 . 2018EnST...52.3329H . 0013-936X . free.
- Hopwood J, Code A, Vaughan M, Biddinger D, Shepherd M, Black SH, Lee-Mäder E, Mazzacano C . 2012 . Are Neonicotinoids Killing Bees? . Portland, OR . The Xerces Society for Invertebrate Conservation . 2016-05-04 . 2016-04-23 . https://web.archive.org/web/20160423135039/http://www.xerces.org/wp-content/uploads/2012/03/Are-Neonicotinoids-Killing-Bees_Xerces-Society1.pdf.
- 10.1007/s11356-017-0341-3 . 29124633 . An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems . Environmental Science and Pollution Research . 2017 . Pisa . Lennard . Goulson . Dave . Yang . En-Cheng . Gibbons . David . Sánchez-Bayo . Francisco . Mitchell . Edward . Aebi . Alexandre . Van Der Sluijs . Jeroen . MacQuarrie . Chris J. K . Giorio . Chiara . Long . Elizabeth Yim . McField . Melanie . Bijleveld Van Lexmond . Maarten . Bonmatin . Jean-Marc . 28 . 10 . 11749–11797 . 7921077 . free .
- Desneux . Nicolas . Decourtye . Axel . Delpuech . Jean-Marie . The Sublethal Effects of Pesticides on Beneficial Arthropods . Annual Review of Entomology . January 2007 . 52 . 1 . 81–106 . 10.1146/annurev.ento.52.110405.091440 . 16842032 .
- Williamson . Sally M. . Willis . Sarah J. . Wright . Geraldine A. . 2014-10-01 . Exposure to neonicotinoids influences the motor function of adult worker honeybees . Ecotoxicology . en . 23 . 8 . 1409–1418 . 10.1007/s10646-014-1283-x . 1573-3017 . 4165879 . 25011924.
- Czerwinski . Mitchell Andrew . Sadd . Ben Michael . June 2017 . Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity . Journal of Experimental Zoology Part A: Ecological and Integrative Physiology . 327 . 5 . 273–283 . 10.1002/jez.2087 . 29356442 . 315073 . 2471-5638 . 2024-07-12 . 2024-07-12 . https://web.archive.org/web/20240712010043/https://onlinelibrary.wiley.com/doi/10.1002/jez.2087 . live .
- Wu . Judy Y. . Anelli . Carol M. . Sheppard . Walter S. . 2011-02-23 . Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity . PLOS ONE . en . 6 . 2 . e14720 . 10.1371/journal.pone.0014720 . 1932-6203 . 3044129 . 21373182. 2011PLoSO...614720W . free .
- Web site: USDA CCD Report. 2024-07-12. 2023-10-17. https://web.archive.org/web/20231017111938/https://www.ars.usda.gov/is/br/ccd/ccdprogressreport2010.pdf. live.
- Radunz, L. and Smith, E. S. C. Pesticides Hazard to Honey Bees Entomology, Darwin, Australia
- Web site: Carbaryl. Extoxnet. July 24, 2021. September 28, 2021. https://web.archive.org/web/20210928125255/http://extoxnet.orst.edu/pips/carbaryl.htm. live.
- Web site: Carbofuran. Extoxnet. August 1, 1994. July 24, 2021. November 10, 2019. https://web.archive.org/web/20191110175517/http://extoxnet.orst.edu/pips/carbofur.htm. live.
- Web site: Methomyl . Extoxnet . July 24, 2021 . February 26, 2021 . https://web.archive.org/web/20210226020437/http://extoxnet.orst.edu/pips/methomyl.htm . live .
- Web site: Archived copy . 2005-02-04 . 2009-01-31 . https://web.archive.org/web/20090131232824/http://www.scorecard.org/chemical-profiles/summary.tcl?edf_substance_id=315-18-4 . live .
- Web site: Propoxur. Extoxnet. July 24, 2021. July 9, 2021. https://web.archive.org/web/20210709182234/http://extoxnet.orst.edu/pips/propoxur.htm. live.
- Web site: acephate . 2005-02-18 . https://web.archive.org/web/20080306235947/http://www.ipmofalaska.com/files/acephate.html . 2008-03-06 . dead .
- Web site: Acephate General Fact Sheet. National Pesticide Information Center. 2011. July 24, 2021. October 18, 2021. https://web.archive.org/web/20211018022450/http://npic.orst.edu/factsheets/acephagen.pdf. live.
- Web site: Azinphos-methyl . Extoxnet . July 24, 2021 . May 8, 2021 . https://web.archive.org/web/20210508095815/http://extoxnet.orst.edu/pips/azinopho.htm . live .
- News: Europe Rejects Appeal for Use of Azinphos-methyl Pesticide. Scott. Alex. August 4, 2008. Chemical Week. 2008-08-11. 2022-03-14. https://web.archive.org/web/20220314181908/https://chemweek.com/envirotech/regulatory/13435.html. live.
- Web site: Chlorpyrifos. Extoxnet. July 24, 2021. April 11, 2021. https://web.archive.org/web/20210411002130/http://extoxnet.orst.edu/pips/chlorpyr.htm. live.
- http://www.hclrss.demon.co.uk/coumaphos.html coumaphos
- Web site: Demeton-S-methyl . Extoxnet . July 24, 2021 . July 28, 2021 . https://web.archive.org/web/20210728111810/http://extoxnet.orst.edu/pips/demetons.htm . live .
- Web site: Diazinon. Extoxnet. July 24, 2021. December 4, 2021. https://web.archive.org/web/20211204131242/http://extoxnet.orst.edu/pips/diazinon.htm. live.
- Web site: Dicrotophos. Extoxnet. July 24, 2021. April 24, 2009. https://web.archive.org/web/20090424205958/http://extoxnet.orst.edu/pips/dicrotop.htm. live.
- 10.1080/03015521.1973.10427625 . Effect on honey bees of dicrotophos and methomyl applied as sprays to white clover . New Zealand Journal of Experimental Agriculture . 1 . 97–9 . 1973 . Clinch . P. G . Palmer-Jones . T . Forster . I. W . free .
- Web site: Dichlorvos. Extoxnet. July 24, 2021. July 12, 2021. https://web.archive.org/web/20210712145735/http://extoxnet.orst.edu/pips/dichlorv.htm. live.
- Web site: Dimethoate. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508111442/http://extoxnet.orst.edu/pips/dimethoa.htm. live.
- Web site: Fenthion. Extoxnet . July 24, 2021.
- Web site: Fenitrothion. Extoxnet. July 24, 2021. October 1, 2017. https://web.archive.org/web/20171001202706/http://extoxnet.orst.edu/pips/fenitrot.htm. live.
- Web site: Fonofos. Extoxnet. July 24, 2021. August 31, 2021. https://web.archive.org/web/20210831223949/http://extoxnet.orst.edu/pips/fonofos.htm. live.
- Web site: MALATHION GENERAL FACT SHEET . 12 July 2024 . 12 February 2021 . https://web.archive.org/web/20210212024712/http://npic.orst.edu/factsheets/malagen.pdf . live .
- Web site: ACEPHATE (ORTHENE) . Extoxnet . January 26, 2022 . April 16, 2022 . https://web.archive.org/web/20220416073022/http://extoxnet.orst.edu/pips/acephate.htm . live .
- Web site: Methidathion. Extoxnet. July 24, 2021. February 25, 2021. https://web.archive.org/web/20210225112839/http://extoxnet.orst.edu/pips/methidat.htm. live.
- Web site: Parathion. Extoxnet. July 24, 2021. October 1, 2017. https://web.archive.org/web/20171001202428/http://extoxnet.orst.edu/pips/parathio.htm. live.
- Web site: Mevinphos. Extoxnet. July 24, 2021. February 26, 2021. https://web.archive.org/web/20210226181708/http://extoxnet.orst.edu/pips/mevinpho.htm. live.
- Web site: Monocrotophos. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508104435/http://extoxnet.orst.edu/pips/monocrot.htm. live.
- Web site: Naled. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508103254/http://extoxnet.orst.edu/pips/naled.htm. live.
- Web site: DEMETON-S-METHYL . Extoxnet . January 26, 2022 . July 28, 2021 . https://web.archive.org/web/20210728111810/http://extoxnet.orst.edu/pips/demetons.htm . live .
- Web site: Phorate. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508110910/http://extoxnet.orst.edu/pips/phorate.htm. live.
- Web site: Phosmet. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508041149/http://extoxnet.orst.edu/pips/phosmet.htm. live.
- Web site: Archived copy . 2024-07-12 . 2020-06-20 . https://web.archive.org/web/20200620150855/http://pmep.cce.cornell.edu/profiles/extoxnet/metiram-propoxur/phosmet-ext.html . live .
- Web site: Toxicity of Pesticides to Pollinators and Beneficials . Center for Agriculture, Food and the Environment . January 25, 2017 . July 24, 2021 . August 3, 2021 . https://web.archive.org/web/20210803042233/https://ag.umass.edu/fruit/ne-small-fruit-management-guide/appendices-resource-material-listings-conversion-tables-0 . live .
- Web site: Bifenthrin. pmep.cce.cornell.edu. 2018-09-25. 2018-10-05. https://web.archive.org/web/20181005103925/http://pmep.cce.cornell.edu/profiles/extoxnet/24d-captan/bifenthrin-ext.html. live.
- Web site: Permethrin. Extoxnet. July 24, 2021. March 23, 2012. https://web.archive.org/web/20120323153821/http://extoxnet.orst.edu/pips/permethr.htm. live.
- Web site: Cypermethrin . Extoxnet . July 24, 2021 . June 9, 2021 . https://web.archive.org/web/20210609033549/http://extoxnet.orst.edu/pips/cypermet.htm . live .
- Web site: Esfenvalerate. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508111548/http://extoxnet.orst.edu/pips/esfenval.htm. live.
- Web site: Resmethrin. Extoxnet. July 24, 2021. May 5, 2021. https://web.archive.org/web/20210505135802/http://extoxnet.orst.edu/pips/resmethr.htm. live.
- Web site: Active Ingredient Fact Sheets . National Pesticide Information Center . November 9, 2015 . July 24, 2021 . August 1, 2014 . https://web.archive.org/web/20140801104848/http://www.npic.orst.edu/factsheets/ResTech.pdf . live .
- http://www.afpmb.org/pubs/standardlists/msds/6840-01-359-8533_msds.pdf MSDS
- Web site: Methoxychlor. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508043130/http://extoxnet.orst.edu/pips/methoxyc.htm. live.
- Web site: Endosulfan. Extoxnet. July 24, 2021. May 8, 2021. https://web.archive.org/web/20210508110018/http://extoxnet.orst.edu/pips/endosulf.htm. live.
- Web site: EPA Clothianidin Reviews . 2011-02-20 . 2015-02-25 . https://web.archive.org/web/20150225074739/http://www.epa.gov/pesticides/chemical/foia/cleared-reviews/reviews/044309/044309.htm . dead .
- Web site: The National Beekeepers' Association of New Zealand – Submission on Application ERMA200886 . 2013-05-18 . 2016-03-04 . https://web.archive.org/web/20160304001502/http://www.epa.govt.nz/search-databases/HSNO%20Application%20Register%20Documents/ERMA200886_SUBMISSION102502%20-%20NBA%20(D.Macleod).pdf . dead .
- 10.1016/j.pestbp.2011.10.010 . 56–60 . Effects of mutations in Drosophila nicotinic acetylcholine receptor subunits on sensitivity to insecticides targeting nicotinic acetylcholine receptors . Pesticide Biochemistry and Physiology . 102 . 2012 . Perry . Trent . Chan . Janice Q . Batterham . Phil . Watson . Gerald B . Geng . Chaoxian . Sparks . Thomas C .
- Web site: 2,4-D . Extoxnet . July 24, 2021 . August 31, 2021 . https://web.archive.org/web/20210831223839/http://extoxnet.orst.edu/pips/24-D.htm . live .
- Web site: Aldrin . 2005-02-18 . 2015-09-21 . https://web.archive.org/web/20150921175156/http://www.atsdr.cdc.gov/toxfaqs/tfacts1.pdf . live .
- Web site: dieldrin . 2005-02-18 . 2015-09-21 . https://web.archive.org/web/20150921175156/http://www.atsdr.cdc.gov/toxfaqs/tfacts1.pdf . live .
- Web site: Heptachlor. Extoxnet. July 24, 2021. August 31, 2021. https://web.archive.org/web/20210831124308/http://extoxnet.orst.edu/pips/heptachl.htm. live.
- 10.1111/j.1471-4159.1991.tb06361.x . 1833509 . Modulation of Quinolinic and Kynurenic Acid Content in the Rat Brain: Effects of Endotoxins and Nicotinylalanine . Journal of Neurochemistry . 57 . 5 . 1630–5 . 1991 . Moroni . Flavio . Russi . Patrizia . Gallo-Mezo . Miguel Angel . Moneti . Gloriano . Pellicciari . Roberto . 12613550 .
- Web site: Addendum to the 2002 Lindane Reregistration Eligibility Decision (RED). 23 July 2021. 2006. US Environmental Protection Agency. 5 December 2021. https://web.archive.org/web/20211205094954/http://www.bio-nica.info/biblioteca/Edwards2002LindaneRedAddendum.pdf. live.
- Web site: Torello . Alessandro . Haddon . Michael . EU to Restrict 'Bee-Harming' Pesticides . WSJ . April 29, 2013 . July 24, 2021 . June 24, 2013 . https://web.archive.org/web/20130624144202/http://online.wsj.com/article/SB10001424127887323528404578452722238028556.html . live .
- Web site: Neonicotinoids . 2022-04-01 . ec.europa.eu . en . 2022-04-01 . https://web.archive.org/web/20220401182511/https://ec.europa.eu/food/plants/pesticides/approval-active-substances/renewal-approval/neonicotinoids_en . live .
- Web site: Policy Mitigating Acute Risk to Bees from Pesticide Products . US EPA . May 28, 2015 . July 20, 2021 . July 20, 2021 . https://web.archive.org/web/20210720043049/https://www.epa.gov/pollinator-protection/policy-mitigating-acute-risk-bees-pesticide-products . live .
- News: 27 April 2018 . EU to fully ban neonicotinoid insecticides to protect bees . Reuters . 29 April 2018 . 22 June 2018 . https://web.archive.org/web/20180622111458/https://www.reuters.com/article/eu-environment-bees/eu-to-fully-ban-neonicotinoid-insecticides-to-protect-bees-idUSS8N1QI00F . live .
- EU expected to vote on pesticide ban after major scientific review . Nature . February 28, 2018 . 10.1038/d41586-018-02639-1 . Butler . Declan . 555 . 7695 . 150–151 . 2018Natur.555..150B . free .
- News: Carrington D . EU agrees total ban on bee-harming pesticides. The Guardian. 27 April 2018. live. https://web.archive.org/web/20180427101618/https://www.theguardian.com/environment/2018/apr/27/eu-agrees-total-ban-on-bee-harming-pesticides. 27 April 2018. dmy-all.
- Web site: Proposed Interim Registration Review Decision for Neonicotinoids . US EPA . January 30, 2020 . July 20, 2021 . July 20, 2021 . https://web.archive.org/web/20210720042457/https://www.epa.gov/pollinator-protection/proposed-interim-registration-review-decision-neonicotinoids . live .