An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases.[1] The enthalpy of mixing is zero[2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively,[3] and the activity coefficient (which measures deviation from ideality) is equal to one for each component.
The concept of an ideal solution is fundamental to both thermodynamics and chemical thermodynamics and their applications, such as the explanation of colligative properties.
Ideality of solutions is analogous to ideality for gases, with the important difference that intermolecular interactions in liquids are strong and cannot simply be neglected as they can for ideal gases. Instead we assume that the mean strength of the interactions are the same between all the molecules of the solution.
More formally, for a mix of molecules of A and B, then the interactions between unlike neighbors (UAB) and like neighbors UAA and UBB must be of the same average strength, i.e., 2 UAB = UAA + UBB and the longer-range interactions must be nil (or at least indistinguishable). If the molecular forces are the same between AA, AB and BB, i.e., UAB = UAA = UBB, then the solution is automatically ideal.
If the molecules are almost identical chemically, e.g., 1-butanol and 2-butanol, then the solution will be almost ideal. Since the interaction energies between A and B are almost equal, it follows that there is only a very small overall energy (enthalpy) change when the substances are mixed. The more dissimilar the nature of A and B, the more strongly the solution is expected to deviate from ideality.
pi=xip
* | |
i |
pi
i
xi
* | |
p | |
i |
i
This definition depends on vapor pressure, which is a directly measurable property, at least for volatile components. The thermodynamic properties may then be obtained from the chemical potential μ (which is the partial molar Gibbs energy g) of each component. If the vapor is an ideal gas,
\mu(T,pi)=
u(T,p | |
g(T,p | |
i)=g |
u)+RTln{
pi | |
pu |
The reference pressure
pu
Po
On substituting the value of
pi
\mu(T,pi)=gu(T,pu)+RTln{
| |||||||
pu |
This equation for the chemical potential can be used as an alternate definition for an ideal solution.
However, the vapor above the solution may not actually behave as a mixture of ideal gases. Some authors therefore define an ideal solution as one for which each component obeys the fugacity analogue of Raoult's law
fi=xi
* | |
f | |
i |
fi
i
* | |
f | |
i |
i
\mu(T,P)=g(T,P)=gu(T,pu)+RTln{
fi | |
pu |
this definition leads to ideal values of the chemical potential and other thermodynamic properties even when the component vapors above the solution are not ideal gases. An equivalent statement uses thermodynamic activity instead of fugacity.[9]
If we differentiate this last equation with respect to
p
T
\left( | \partialg(T,P) |
\partialP |
\right)T=RT\left(
\partiallnf | |
\partialP |
\right)T.
\left( | \partialg(T,P) |
\partialP |
\right)T=v
with the molar volume
v
\left( | \partiallnf |
\partialP |
\right)T=
v | |
RT |
.
Since all this, done as a pure substance, is valid in an ideal mix just adding the subscript
i
v
\bar{vi}
\left( | \partiallnfi |
\partialP |
\right) | = | |
T,xi |
\bar{vi | |
Applying the first equation of this section to this last equation we find:
* | |
v | |
i |
=\bar{v}i
V=\sumi
*. | |
V | |
i |
Proceeding in a similar way but taking the derivative with respect to
T
g(T,P)-ggas(T,pu) | =ln | |
RT |
f | |
pu |
.
\left(
| ||||||
\partialT |
\right) | ||||
|
- | \bar{hi |
-h |
gas | |
i |
\bar{hi}=h
* | |
i |
Since
\bar{ui}=\bar{hi}-p\bar{vi}
* | |
u | |
i |
=
* | |
h | |
i |
-p
* | |
v | |
i |
*=\bar{u | |
u | |
i}. |
*=\bar{C | |
C | |
pi |
Finally since
\bar{gi}=\mui=g
gas+RTln | |
i |
fi | |
pu |
gas+RTln | |
=g | |
i |
| |||||||
pu |
+RTlnxi=\mu
*+ | |
i |
RTlnxi
\Deltagi,mix=RTlnxi.
Gm
\DeltaGm,mix=RT\sumi{xilnxi}.
At last we can calculate the molar entropy of mixing since
* | |
g | |
i |
\bar{gi}=\bar{hi}-T\bar{si}
\Deltasi,mix=-R\sumilnxi
\DeltaSm,mix=-R\sumixilnxi.
Solvent–solute interactions are the same as solute–solute and solvent–solvent interactions, on average. Consequently, the enthalpy of mixing (solution) is zero and the change in Gibbs free energy on mixing is determined solely by the entropy of mixing. Hence the molar Gibbs free energy of mixing is
\DeltaGm,mix=RT\sumixilnxi
\DeltaGm,mix=RT(xAlnxA+xBlnxB)
xi
i
xi\in[0,1]
lnxi
xi\to0
The equation above can be expressed in terms of chemical potentials of the individual components
\DeltaGm,mix=\sumixi\Delta\mui,mix
\Delta\mui,mix=RTlnxi
i
i
* | |
\mu | |
i |
i
\mui=
* | |
\mu | |
i |
+RTlnxi.
Any component
i
pi=(pi)purexi
(pi)pure
i
xi
i
Deviations from ideality can be described by the use of Margules functions or activity coefficients. A single Margules parameter may be sufficient to describe the properties of the solution if the deviations from ideality are modest; such solutions are termed regular.
In contrast to ideal solutions, where volumes are strictly additive and mixing is always complete, the volume of a non-ideal solution is not, in general, the simple sum of the volumes of the component pure liquids and solubility is not guaranteed over the whole composition range. By measurement of densities, thermodynamic activity of components can be determined.