In geometry, an icositetragon (or icosikaitetragon) or 24-gon is a twenty-four-sided polygon. The sum of any icositetragon's interior angles is 3960 degrees.
The regular icositetragon is represented by Schläfli symbol and can also be constructed as a truncated dodecagon, t, or a twice-truncated hexagon, tt, or thrice-truncated triangle, ttt.
One interior angle in a regular icositetragon is 165°, meaning that one exterior angle would be 15°.
The area of a regular icositetragon is: (with t = edge length)
A=6t2\cot
\pi | |
24 |
={6}t2(2+\sqrt{2}+\sqrt{3}+\sqrt{6}).
The icositetragon appeared in Archimedes' polygon approximation of pi, along with the hexagon (6-gon), dodecagon (12-gon), tetracontaoctagon (48-gon), and enneacontahexagon (96-gon).
As 24 = 23 × 3, a regular icositetragon is constructible using an angle trisector.[1] As a truncated dodecagon, it can be constructed by an edge-bisection of a regular dodecagon.
The regular icositetragon has Dih24 symmetry, order 48. There are 7 subgroup dihedral symmetries: (Dih12, Dih6, Dih3), and (Dih8, Dih4, Dih2 Dih1), and 8 cyclic group symmetries: (Z24, Z12, Z6, Z3), and (Z8, Z4, Z2, Z1).
These 16 symmetries can be seen in 22 distinct symmetries on the icositetragon. John Conway labels these by a letter and group order.[2] The full symmetry of the regular form is r48 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.
Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g24 subgroup has no degrees of freedom but can be seen as directed edges.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms.[3] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular icositetragon, m=12, and it can be divided into 66: 6 squares and 5 sets of 12 rhombs. This decomposition is based on a Petrie polygon projection of a 12-cube.
A regular triangle, octagon, and icositetragon can completely fill a plane vertex.
An icositetragram is a 24-sided star polygon. There are 3 regular forms given by Schläfli symbols:,, and . There are also 7 regular star figures using the same vertex arrangement: 2, 3, 4, 6, 8, 3, and 2.
Icositetragrams as star polygons and star figures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Form | Convex polygon | Compounds | Star polygon | Compound | |||||||
Image | = | =2 | =3 | =4 | =6 | ||||||
Interior angle | 165° | 150° | 135° | 120° | 105° | 90° | |||||
Form | Star polygon | Compounds | Star polygon | Compound | |||||||
Image | =8 | =3 | =2 | =12 | |||||||
Interior angle | 75° | 60° | 45° | 30° | 15° | 0° |
There are also isogonal icositetragrams constructed as deeper truncations of the regular dodecagon and dodecagram . These also generate two quasitruncations: t=, and t=. [4]
A regular skew icositetragon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew icositetragon and can be seen in the vertices and side edges of a dodecagonal antiprism with the same D12d, [2<sup>+</sup>,24] symmetry, order 48. The dodecagrammic antiprism, s and dodecagrammic crossed-antiprism, s also have regular skew dodecagons.
The regular icositetragon is the Petrie polygon for many higher-dimensional polytopes, seen as orthogonal projections in Coxeter planes, including: