In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials)
(\alpha,\beta) | |
P | |
n |
(x)
(1-x)\alpha(1+x)\beta
[-1,1]
The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi.
The Jacobi polynomials are defined via the hypergeometric function as follows:
(\alpha,\beta) | ||
P | (z)= | |
n |
(\alpha+1)n | |
n! |
{}2F1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),
where
(\alpha+1)n
(\alpha,\beta) | |
P | |
n |
(z)=
\Gamma(\alpha+n+1) | |
n!\Gamma(\alpha+\beta+n+1) |
n | |
\sum | |
m=0 |
{n\choosem}
\Gamma(\alpha+\beta+n+m+1) | \left( | |
\Gamma(\alpha+m+1) |
z-1 | |
2 |
\right)m.
An equivalent definition is given by Rodrigues' formula:[1]
(\alpha,\beta) | |
P | |
n |
(z)=
(-1)n | |
2nn! |
(1-z)-\alpha(1+z)-\beta
dn | |
dzn |
\left\{(1-z)\alpha(1+z)\beta\left(1-z2\right)n\right\}.
If
\alpha=\beta=0
Pn(z)=
1 | |
2nn! |
dn | |
dzn |
(z2-1)n .
For real
x
(\alpha,\beta) | |
P | |
n |
(x)=
n | |
\sum | |
s=0 |
{n+\alpha\choosen-s}{n+\beta\chooses}\left(
x-1 | |
2 |
\right)s\left(
x+1 | |
2 |
\right)n-s
and for integer
n
{z\choosen}=\begin{cases}
\Gamma(z+1) | |
\Gamma(n+1)\Gamma(z-n+1) |
&n\geq0\ 0&n<0\end{cases}
where
\Gamma(z)
In the special case that the four quantities
n
n+\alpha
n+\beta
n+\alpha+\beta
The sum extends over all integer values of
s
(\alpha,\beta) | |
P | |
0 |
(z)=1,
(\alpha,\beta) | |
P | |
1 |
(z)=(\alpha+1)+(\alpha+\beta+2)
z-1 | |
2 |
,
(\alpha,\beta) | |
P | |
2 |
(z)=
(\alpha+1)(\alpha+2) | |
2 |
+(\alpha+2)(\alpha+\beta+3)
z-1 | |
2 |
+
(\alpha+\beta+3)(\alpha+\beta+4) | \left( | |
2 |
z-1 | |
2 |
\right)2.
The Jacobi polynomials satisfy the orthogonality condition
1 | |
\int | |
-1 |
(1-x)\alpha(1+x)\beta
(\alpha,\beta) | |
P | |
m |
(\alpha,\beta) | |
(x)P | |
n |
(x)dx=
2\alpha+\beta+1 | |
2n+\alpha+\beta+1 |
\Gamma(n+\alpha+1)\Gamma(n+\beta+1) | |
\Gamma(n+\alpha+\beta+1)n! |
\deltanm, \alpha, \beta>-1.
As defined, they do not have unit norm with respect to the weight. This can be corrected by dividing by the square root of the right hand side of the equation above, when
n=m
Although it does not yield an orthonormal basis, an alternative normalization is sometimes preferred due to its simplicity:
(\alpha,\beta) | |
P | |
n |
(1)={n+\alpha\choosen}.
The polynomials have the symmetry relation
(\alpha,\beta) | |
P | |
n |
(-z)=(-1)n
(\beta,\alpha) | |
P | |
n |
(z);
thus the other terminal value is
(\alpha,\beta) | |
P | |
n |
(-1)=(-1)n{n+\beta\choosen}.
The
k
dk | |
dzk |
(\alpha,\beta) | |
P | |
n |
(z)=
\Gamma(\alpha+\beta+n+1+k) | |
2k\Gamma(\alpha+\beta+n+1) |
(\alpha+k,\beta+k) | |
P | |
n-k |
(z).
The Jacobi polynomial
(\alpha,\beta) | |
P | |
n |
\left(1-x2\right)y''+(\beta-\alpha-(\alpha+\beta+2)x)y'+n(n+\alpha+\beta+1)y=0.
The recurrence relation for the Jacobi polynomials of fixed
\alpha
\beta
\begin{align} &2n(n+\alpha+\beta)(2n+\alpha+\beta-2)
(\alpha,\beta) | |
P | |
n |
(z)\\ & =(2n+\alpha+\beta-1)\{(2n+\alpha+\beta)(2n+\alpha+\beta-2)z+\alpha2-\beta2\}
(\alpha,\beta) | |
P | |
n-1 |
(z)-2(n+\alpha-1)(n+\beta-1)(2n+\alpha+\beta)
(\alpha,\beta) | |
P | |
n-2 |
(z), \end{align}
for
n=2,3,\ldots
a:=n+\alpha
b:=n+\beta
c:=a+b=2n+\alpha+\beta
a,b,c
2n(c-n)(c-2)
(\alpha,\beta) | |
P | |
n |
(z)=(c-1)\{c(c-2)z+(a-b)(c-2n)\}
(\alpha,\beta) | |
P | |
n-1 |
(z)-2(a-1)(b-1)c
(\alpha,\beta) | |
P | |
n-2 |
(z).
\begin{align} (z-1)
d | |
dz |
(\alpha,\beta) | |
P | |
n |
(z)&=
1 | |
2 |
(\alpha+1,\beta+1) | |
(z-1)(1+\alpha+\beta+n)P | |
n-1 |
\\ &=n
(\alpha,\beta) | |
P | |
n |
-(\alpha+n)
(\alpha,\beta+1) | |
P | |
n-1 |
\\ &=(1+\alpha+\beta+n)\left(
(\alpha,\beta+1) | |
P | |
n |
-
(\alpha,\beta) | |
P | |
n |
\right)\\ &=(\alpha+n)
(\alpha-1,\beta+1) | |
P | |
n |
-\alpha
(\alpha,\beta) | |
P | |
n |
\\ &=
| |||||||||||||||
1+z |
\\ &=
| |||||||||||||||
1+z |
\\ &=
1-z | |
1+z |
\left(\beta
(\alpha,\beta) | |
P | |
n |
-(\beta+n)
(\alpha+1,\beta-1) | |
P | |
n |
\right). \end{align}
The generating function of the Jacobi polynomials is given by
infty | |
\sum | |
n=0 |
(\alpha,\beta) | |
P | |
n |
(z)tn=2\alphaR-1(1-t+R)-\alpha(1+t+R)-\beta,
where
R=R(z,t)=\left(1-2zt+t2\right)
| ||||
~,
and the branch of square root is chosen so that
R(z,0)=1
For
x
[-1,1]
(\alpha,\beta) | |
P | |
n |
n
(\alpha,\beta) | |
P | |
n |
(\cos\theta)=
| ||||
n |
k(\theta)\cos(N\theta+\gamma)+O\left
| ||||
(n |
\right),
where
\begin{align} k(\theta)&=
| ||||
\pi |
| ||||
\sin |
\tfrac{\theta}{2}
| ||||
\cos |
\tfrac{\theta}{2},\\ N&=n+\tfrac{1}{2}(\alpha+\beta+1),\\ \gamma&=-\tfrac{\pi}{2}\left(\alpha+\tfrac{1}{2}\right),\\ 0<\theta&<\pi \end{align}
and the "
O
[\varepsilon,\pi-\varepsilon]
\varepsilon>0
The asymptotics of the Jacobi polynomials near the points
\pm1
\begin{align} \limnn-\alpha
(\alpha,\beta) | |
P | |
n |
\left(\cos\left(\tfrac{z}{n}\right)\right)&=\left(\tfrac{z}{2}\right)-\alphaJ\alpha(z)\ \limnn-\beta
(\alpha,\beta) | |
P | |
n |
\left(\cos\left(\pi-\tfrac{z}{n}\right)\right)&=\left(\tfrac{z}{2}\right)-\betaJ\beta(z) \end{align}
where the limits are uniform for
z
The asymptotics outside
[-1,1]
j | |
d | |
m',m |
(\phi)
0\leq\phi\leq4\pi
j | |
d | |
m'm |
(\phi)
| ||||
=(-1) |
\left[
(j+M)!(j-M)! | |
(j+N)!(j-N)! |
| ||||
\right] |
\left(\sin\tfrac{\phi}{2}\right)|m-m'|\left(\cos\tfrac{\phi}{2}\right)|m+m'|
(|m-m'|,|m+m'|) | |
P | |
j-m |
(\cos\phi),
where
M=max(|m|,|m'|),N=min(|m|,|m'|)