In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.
A hyperbolic
n
n
-1
Every complete, connected, simply-connected manifold of constant negative curvature
-1
Hn
M
-1
Hn
M
Hn/\Gamma
\Gamma
Hn
\Gamma
+ | |
SO | |
1,n |
R
\Gamma
Its thick–thin decomposition has a thin part consisting of tubular neighborhoods of closed geodesics and ends which are the product of a Euclidean (
n-1
The simplest example of a hyperbolic manifold is hyperbolic space, as each point in hyperbolic space has a neighborhood isometric to hyperbolic space.
A simple non-trivial example, however, is the once-punctured torus. This is an example of an (Isom( H2 H2
H2
In a similar fashion, we can construct the thrice-punctured sphere, shown below, by gluing two ideal triangles together. This also shows how to draw curves on the surface – the black line in the diagram becomes the closed curve when the green edges are glued together. As we are working with a punctured sphere, the colored circles in the surface – including their boundaries – are not part of the surface, and hence are represented in the diagram as ideal vertices.
Many knots and links, including some of the simpler knots such as the figure eight knot and the Borromean rings, are hyperbolic, and so the complement of the knot or link in
S3
For
n>2
n