Hydrothermal carbonization explained

Hydrothermal carbonization (HTC) (also referred to as "aqueous carbonization at elevated temperature and pressure") is a chemical process for the conversion of organic compounds to structured carbons. It can be used to make a wide variety of nanostructured carbons, simple production of brown coal substitute, synthesis gas, liquid petroleum precursors and humus from biomass with release of energy. Technically the process imitates, within a few hours, the brown coal formation process (German "Inkohlung" literally "coalification") which takes place in nature over enormously longer geological periods of 50,000 to 50 million years. It was investigated by Friedrich Bergius and first described in 1913.[1]

Motivation

The carbon efficiency of most processes to convert organic matter to fuel is relatively low. I.e. the proportion of carbon contained in the biomass, which is later contained in the usable end product is relatively low:

ProcessCarbon efficiency
alcoholic fermentation67%
gasification to H2 or CH460%
gasification and Fischer-Tropsch synthesis50%
anaerobic conversion to biogas50%
wood charcoal production30%
production of humus by composting5% to 10%
In poorly designed systems, the unused carbon escapes into the atmosphere as carbon dioxide, or, when fermented, as methane. Both gases are greenhouse gases with methane even more climate-active on a per molecule basis than . In addition, the heat which is released in these processes is not generally used. Advanced modern systems capture nearly all the gases and use the heat as part of the process or for district heating.

The problem with the production of biodiesel from oil plants is that only the energy contained in the fruit can be used. If the entire plant could be used for fuel production, the energy yield could be increased by a factor of three to five with the same cultivation area when growing fast-growing plants such as willow, poplar, miscanthus, hemp, reeds or forestry, while simultaneously reducing energy, fertilizer and herbicide use, with the possibility of using - for current energy plant cultivation - poor soil. Hydrothermal carbonization makes it possible - similar to the biomass-to-liquid process - to use almost all of the carbon contained in the biomass for fuel generation. It is a new variation of an old field (biomass conversion to biofuel) that has recently been further developed in Germany.[2] It involves moderate temperatures and pressures over an aqueous solution of biomass in a dilute acid for several hours. The resulting matter reportedly captures 100% of the carbon in a "charcoal" powder that could provide a feed source for soil amendment (similar to biochar) and further studies in economic nanomaterial production.[3]

Process

Biomass is heated together with water to in a pressure vessel, in particular vegetable material (in the following reaction equation, simplified as sugar with the formula). The pressure rises to about . During the reaction, oxonium ions are also formed which reduce the pH to pH 5 and lower. This step can be accelerated by adding a small amount of citric acid.[4] In this case, at low pH values, more carbon passes into the aqueous phase. The effluent reaction is exothermic, that is, energy is released. After 12 hours, the carbon of the reactants is completely reacted, 90 to 99% of the carbon is present as an aqueous sludge of porous brown coal spheres (C6H2O) with pore sizes between 8 and 20 nm as a solid phase, the remaining 1 to 10% of carbon is either dissolved in the aqueous phase or converted to carbon dioxide. The reaction equation for the formation of brown coal is:

C6H12O6

C6H2O

+

5 H2O    \DeltaH=-1.105 kJ/mol

The reaction can be stopped in several stages with incomplete elimination of water, giving different intermediate products. After a few minutes, liquid intermediate lipophilic substances are formed, but their handling is very difficult because of their high reactivity. Subsequently, these substances polymerize and peat-like structures are formed, which are present as intermediates after about 8 hours.

Efficiency

As a result of the exothermic reaction of hydrothermal carbonization, about 3/8 of the calorific value of the biomass based on the dry mass is released (with a high lignin, resin and/or oil content of at least 1/4). If the process is managed properly, it is possible to use this waste heat from wet biomass to produce dry biocoal and to use some of the converted energy for energy generation.

In a large-scale technical implementation of hydrothermal carbonization of sewage sludge, it has been shown that about 20% of the fuel energy content contained in 90% end-dried HTC coal is required to heat the process. Furthermore, approximately 5% of the generated energy content is necessary for the electrical operation of the plant. It has proved particularly beneficial in the case of the HTC process that, with mechanical dehydration, more than 60% of the dry substance content can be achieved in the raw carbon, and thus the energy and equipment expenditure for the final drying of the coal is low compared to conventional drying methods of these slurries.[5]

Compared to sludge digestion with subsequent drying, the energy requirement of the HTC is lower by approximately 20% of the electrical energy and approximately 70% of the thermal energy. The amount of energy produced by the HTC as a storable coal is simultaneously 10% higher.[6] Compared to conventional thermal drying of sewage sludge, the HTC saves 62% of electricity and 69% of thermal energy due to its significantly simpler drainage.[7]

Benefits

C6H2O

+

5 H2O

6 CO+

6 H2

This synthesis gas could be used to produce gasoline via the Fischer-Tropsch process. Alternatively, the liquid intermediates that are formed during the incomplete conversion of the biomass could be used for fuel and plastic production.

Problems

Current application intentions

Mexico City started the construction of the first HTC module for the conversion of 23.000 tons of organic waste per year in 2022. The plant is based on the TerraNova HTC technology and includes a pyrolysis plant to provide process heat to the HTC process.[12]

In Phoenixville, Pennsylvania in the US, HTC will be used in the first municipally owned wastewater treatment in North America built by SoMax BioEnergy[13]

In Mezzocorona (TN), Italy, the first HTC in the country was built in late 2019 by CarboREM and it is in service treating the digestate from an existent anaerobic digestion plant (AD). The AD is fed with sludge coming from regional-based wineries and dairies. The slurry from the HTC plant is then separated by a centrifuge, the HTC liquid is recirculated to the AD plant to produce more biogas and nearly 500 tons per year of hydrochar are produced. Subsequently, hydrochar is stabilized and processed by a third company as compost for the re-introduction in agriculture with a circular process.

In Relzow, Germany near Anklam (Mecklenburg-Western Pomerania) an HTC plant was officially inaugurated in the middle of November 2017 in "Innovation Park Vorpommern".[14] AVA is also the first company in the world to establish an HTC plant on an industrial level in 2010.

In the Summer of 2016, an HTC plant for the treatment of sewage sludge was put into operation in Jining/China, to produce renewable fuel for the local coal-fired power plant. According to the manufacturer TerraNova Energy, it is in continuous operation with an annual capacity of 14.000 tons.[15]

See also

External links

Literature

Notes and References

  1. Friedrich Carl Rudolf Bergius: Anwendung hoher Drucke bei chemischen Vorgängen und die Nachbildung des Entstehungsprozesses der Steinkohle. W. Knapp, Halle a.S. 1913, .
  2. Maria-Magdalena Titirici, Arne Thomas and Markus Antonietti, New J. Chem., 2007, 31, 787-789. "Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?"
  3. http://www.rsc.org/publishing/journals/NJ/article.asp?doi=b616045j Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the 2problem?
  4. Peter Brandt: Die „Hydrothermale Carbonisierung": eine bemerkenswerte Möglichkeit, um die Entstehung von CO2 zu minimieren oder gar zu vermeiden? In: J. Verbr. Lebensm. 4 (2009): S. 151–154, .
  5. Marc Buttmann: Klimafreundliche Kohle durch HTC von Biomasse. (PDF; 7,0 MB). In: Chemie Ingenieur Technik, 2011, 83, 11, 1890-1896. Retrieved 4 July 2012.
  6. P. Jeitz, O. Deiss: Neue Wege in der Klärschlammaufbereitung. (PDF; 1,1 MB). In: Aqua & Gas. 2012, 4, 42-45. Retrieved 4 July 2012.
  7. Web site: 2016-08-24.

    Weiter :::

    . 2020-09-23. https://web.archive.org/web/20160824054424/http://www.ava-co2.com/web/media/downloads_DE/dokumente/Schlussbericht_BAFU_HTC_2013.pdf. 2016-08-24.
  8. Tobias Wittmann: Biomasse zu Brennstoff veredeln. In: Energy 2.0. Ausgabe 01/2011.
  9. Web site: Deutsche Phosphor Plattform e.V. . TerraNova® Ultra Phosphorus Recovery Process . dead . https://web.archive.org/web/20181017133242/https://www.deutsche-phosphor-plattform.de/wp-content/uploads/2018/06/Kennblatt_TerraNova.pdf . 2018-10-17 . 2019-03-25 . www.deutsche-phosphor-plattform.de.
  10. Wang . Chenyu . Fan . Yujie . Hornung . Ursel . Zhu . Wei . Dahmen . Nicolaus . 2020-01-01 . Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: Effect of organic matter composition and experiments with model compounds . Journal of Cleaner Production . 242 . 118586 . 10.1016/j.jclepro.2019.118586 . 0959-6526.
  11. Heidari . Mohammad . Dutta . Animesh . Acharya . Bishnu . Mahmud . Shohel . 2019-12-01 . A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion . Journal of the Energy Institute . 92 . 6 . 1779–1799 . 10.1016/j.joei.2018.12.003 . 1743-9671 . Science Direct.
  12. Web site: Proceso Planta de Carbonización Hidrotermal . .
  13. Web site: Phoenixville's wastewater treatment plant to get a first-of-its-kind upgrade. WHYY - PBS - NPR.
  14. Web site: HTC plant launch. 2020-09-23. ipi.ag.
  15. Web site: TerraNova Energy GmbH. Project Jining - Sludge Drying by TerraNova Energy. 2020-09-23. TerraNova Energy - Hydrothermal Carbonization. en-GB.