Hydraulic conductivity explained

In science and engineering, hydraulic conductivity (in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network.[1] It depends on the intrinsic permeability (unit: m) of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity,, describes water movement through saturated media.By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

Methods of determination

There are two broad approaches for determining hydraulic conductivity:

The experimental approach is broadly classified into:

The small-scale field tests are further subdivided into:

The methods of determining hydraulic conductivity and other hydraulic properties are investigated by numerous researchers and include additional empirical approaches.[2]

Estimation by empirical approach

Estimation from grain size

Allen Hazen derived an empirical formula for approximating hydraulic conductivity from grain-size analyses:

K=C(D10)2

where

C

Hazen's empirical coefficient, which takes a value between 0.0 and 1.5 (depending on literature), with an average value of 1.0. A.F. Salarashayeri & M. Siosemarde indicate C is usually between 1.0 and 1.5, with D in mm and K in cm/s.

D10

is the diameter of the 10 percentile grain size of the material.

Pedotransfer function

A pedotransfer function (PTF) is a specialized empirical estimation method, used primarily in the soil sciences, but increasingly used in hydrogeology.[3] There are many different PTF methods, however, they all attempt to determine soil properties, such as hydraulic conductivity, given several measured soil properties, such as soil particle size, and bulk density.

Determination by experimental approach

There are relatively simple and inexpensive laboratory tests that may be run to determine the hydraulic conductivity of a soil: constant-head method and falling-head method.

Laboratory methods

Constant-head method

The constant-head method is typically used on granular soil. This procedure allows water to move through the soil under a steady state head condition while the volume of water flowing through the soil specimen is measured over a period of time. By knowing the volume of water measured in a time, over a specimen of length and cross-sectional area, as well as the head, the hydraulic conductivity can be derived by simply rearranging Darcy's law:

K=

\DeltaV
\Deltat
L
Ah

Proof: Darcy's law states that the volumetric flow depends on the pressure differential between the two sides of the sample, the permeability and the viscosity as: [4]

\DeltaV=-
\Deltat
kA
\muL

\DeltaP

In a constant head experiment, the head (difference between two heights) defines an excess water mass,, where is the density of water. This mass weighs down on the side it is on, creating a pressure differential of, where is the gravitational acceleration.Plugging this directly into the above gives
\DeltaV=-
\Deltat
k\rhogA
\muL

h

If the hydraulic conductivity is defined to be related to the hydraulic permeability as

K=

k\rhog
\mu

,

this gives the result.

Falling-head method

In the falling-head method, the soil sample is first saturated under a specific head condition. The water is then allowed to flow through the soil without adding any water, so the pressure head declines as water passes through the specimen. The advantage to the falling-head method is that it can be used for both fine-grained and coarse-grained soils..[5] If the head drops from to in a time, then the hydraulic conductivity is equal to

K=

Lln
\Deltat
hf
hi
Proof: As above, Darcy's law reads
\DeltaV=-K
\Deltat
A
L

h

The decrease in volume is related to the falling head by .Plugging this relationship into the above, and taking the limit as, the differential equation
dh
dt

=-

K
L

h

has the solution

h(t)=

-K(t-ti)
L
h
ie

.

Plugging in

h(tf)=hf

and rearranging gives the result.

In-situ (field) methods

In compare to laboratory method, field methods gives the most reliable information about the permeability of soil with minimum disturbances. In laboratory methods, the degree of disturbances affect the reliability of value of permeability of the soil.

Pumping Test

Pumping test is the most reliable method to calculate the coefficient of permeability of a soil. This test is further classified into Pumping in test and pumping out test.

Augerhole method

There are also in-situ methods for measuring the hydraulic conductivity in the field.
When the water table is shallow, the augerhole method, a slug test, can be used for determining the hydraulic conductivity below the water table.
The method was developed by Hooghoudt (1934)[6] in The Netherlands and introduced in the US by Van Bavel en Kirkham (1948).[7]
The method uses the following steps:

  1. an augerhole is perforated into the soil to below the water table
  2. water is bailed out from the augerhole
  3. the rate of rise of the water level in the hole is recorded
  4. the -value is calculated from the data as:[8]

K=F

Ho-Ht
t

where:

F=4000r\left(20+
h'
D\right)\left(2-
r
h'
D

\right)

where:

h'=\tfrac{Ho+Ht}{2}

The picture shows a large variation of -values measured with the augerhole method in an area of 100 ha.[9] The ratio between the highest and lowest values is 25. The cumulative frequency distribution is lognormal and was made with the CumFreq program.

Related magnitudes

Transmissivity

The transmissivity is a measure of how much water can be transmitted horizontally, such as to a pumping well.

Transmissivity should not be confused with the similar word transmittance used in optics, meaning the fraction of incident light that passes through a sample.An aquifer may consist of soil layers. The transmissivity of a horizontal flow for the th soil layer with a saturated thickness and horizontal hydraulic conductivity is:

Ti=Kidi

Transmissivity is directly proportional to horizontal hydraulic conductivity and thickness . Expressing in m/day and in m, the transmissivity is found in units m2/day.
The total transmissivity of the aquifer is the sum of every layer's transmissivity:

Tt=\sumTi

The apparent horizontal hydraulic conductivity of the aquifer is:

KA=

Tt
Dt
where, the total thickness of the aquifer, is the sum of each layer's individual thickness: D_t = \sum d_i.

The transmissivity of an aquifer can be determined from pumping tests.[10]

Influence of the water table
When a soil layer is above the water table, it is not saturated and does not contribute to the transmissivity. When the soil layer is entirely below the water table, its saturated thickness corresponds to the thickness of the soil layer itself. When the water table is inside a soil layer, the saturated thickness corresponds to the distance of the water table to the bottom of the layer. As the water table may behave dynamically, this thickness may change from place to place or from time to time, so that the transmissivity may vary accordingly.
In a semi-confined aquifer, the water table is found within a soil layer with a negligibly small transmissivity, so that changes of the total transmissivity resulting from changes in the level of the water table are negligibly small.
When pumping water from an unconfined aquifer, where the water table is inside a soil layer with a significant transmissivity, the water table may be drawn down whereby the transmissivity reduces and the flow of water to the well diminishes.

Resistance

The resistance to vertical flow of the th soil layer with a saturated thickness and vertical hydraulic conductivity is:

R
i=di
K
vi
Expressing in m/day and in m, the resistance is expressed in days.
The total resistance of the aquifer is the sum of each layer's resistance:

Rt=\sumRi=\sum

di
K
vi

The apparent vertical hydraulic conductivity of the aquifer is:
K=
vA
Dt
Rt
where is the total thickness of the aquifer: D_t=\sum d_i.

The resistance plays a role in aquifers where a sequence of layers occurs with varying horizontal permeability so that horizontal flow is found mainly in the layers with high horizontal permeability while the layers with low horizontal permeability transmit the water mainly in a vertical sense.

Anisotropy

When the horizontal and vertical hydraulic conductivity (K_ and K_) of the i\mbox soil layer differ considerably, the layer is said to be anisotropic with respect to hydraulic conductivity.
When the apparent horizontal and vertical hydraulic conductivity (K_ and K_) differ considerably, the aquifer is said to be anisotropic with respect to hydraulic conductivity.
An aquifer is called semi-confined when a saturated layer with a relatively small horizontal hydraulic conductivity (the semi-confining layer or aquitard) overlies a layer with a relatively high horizontal hydraulic conductivity so that the flow of groundwater in the first layer is mainly vertical and in the second layer mainly horizontal.
The resistance of a semi-confining top layer of an aquifer can be determined from pumping tests.
When calculating flow to drains[11] or to a well field[12] in an aquifer with the aim to control the water table, the anisotropy is to be taken into account, otherwise the result may be erroneous.

Relative properties

Because of their high porosity and permeability, sand and gravel aquifers have higher hydraulic conductivity than clay or unfractured granite aquifers. Sand or gravel aquifers would thus be easier to extract water from (e.g., using a pumping well) because of their high transmissivity, compared to clay or unfractured bedrock aquifers.

Hydraulic conductivity has units with dimensions of length per time (e.g., m/s, ft/day and (gal/day)/ft2); transmissivity then has units with dimensions of length squared per time. The following table gives some typical ranges (illustrating the many orders of magnitude which are likely) for K values.

Hydraulic conductivity (K) is one of the most complex and important of the properties of aquifers in hydrogeology as the values found in nature:

Ranges of values for natural materials

Table of saturated hydraulic conductivity (K) values found in natureValues are for typical fresh groundwater conditions — using standard values of viscosity and specific gravity for water at 20 °C and 1 atm.See the similar table derived from the same source for intrinsic permeability values.[13]

K (cm/s)10²101100=110−110−210−310−410−510−610−710−810−910−10
K (ft/day)10510,0001,0001001010.10.010.0010.000110−510−610−7
Relative PermeabilityPerviousSemi-PerviousImpervious
AquiferGoodPoorNone
Unconsolidated Sand & GravelWell Sorted GravelWell Sorted Sand or Sand & GravelVery Fine Sand, Silt, Loess, Loam
Unconsolidated Clay & OrganicPeatLayered ClayFat / Unweathered Clay
Consolidated RocksHighly Fractured RocksOil Reservoir RocksFresh SandstoneFresh Limestone, DolomiteFresh Granite

Source: modified from Bear, 1972

Hydraulic conductivity at Liquid Limit for several Clays[14] [15]
Soil Type Liquid Limit, LL (%) Void Ratio at Liquid Limit,

eL

(%)
Hydraulic conductivity,

10-7

cm/s
Bentonite 3309.24 1,28
Bentonite

+

sand
215 5,91 2,65
Natural marine soil106 2,798 2,56
Air-dried marine soil84 2,234 2,42
Open-dried marine soil60 1,644 2,63
Brown soil62 1,674 2,83

See also

References

  1. https://www.preene.com/blog/2014/07/what-is-hydraulic-conductivity#:~:text=DEFINITIONS%20OF%20HYDRAULIC%20CONDUCTIVITY&text=In%20theoretical%20terms%2C%20hydraulic%20conductivity,the%20material%20is%20less%20permeable. Hydraulic conductivity definition
  2. Empirical Methods and Estimation of Hydraulic Conductivity of Fluvial Aquifers . 10.2113/gseegeosci.22.4.319 . 2016 . Sahu . Sudarsan . Saha . Dipankar . Environmental & Engineering Geoscience . 22 . 4 . 319–340 . 2016EEGeo..22..319S .
  3. Wösten, J.H.M., Pachepsky, Y.A., and Rawls, W.J. . Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics . 2001 . 251 . 3–4 . 123–150 . 10.1016/S0022-1694(01)00464-4 . . 2001JHyd..251..123W .
  4. https://imechanica.org/files/JCIS-2019-Tailoring%20porous%20media%20for%20controllable%20capillary%20flow_0.pdf Controlling capillary flow
  5. Liu, Cheng "Soils and Foundations." Upper Saddle River, New Jersey: Prentice Hall, 2001
  6. S.B.Hooghoudt, 1934, in Dutch. Bijdrage tot de kennis van enige natuurkundige grootheden van de grond. Verslagen Landbouwkundig Onderzoek No. 40 B, p. 215-345.
  7. C.H.M. van Bavel and D. Kirkham, 1948. Field measurement of soil permeability using auger holes. Soil. Sci. Soc. Am. Proc 13:90-96.
  8. Determination of the Saturated Hydraulic Conductivity. Chapter 12 in: H.P.Ritzema (ed., 1994) Drainage Principles and Applications, ILRI Publication 16, p.435-476. International Institute for Land Reclamation and Improvement, Wageningen (ILRI), The Netherlands. . Free download from: http://www.waterlog.info/articles.htm, under nr. 6, or directly as PDF : http://www.waterlog.info/pdf/chap12.pdf
  9. Drainage research in farmers' fields: analysis of data. Contribution to the project “Liquid Gold” of the International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Free download from : http://www.waterlog.info/articles.htm, under nr. 2, or directly as PDF : http://www.waterlog.info/pdf/analysis.pdf
  10. J.Boonstra and R.A.L.Kselik, SATEM 2002: Software for aquifer test evaluation, 2001. Publ. 57, International Institute for Land reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line : http://content.alterra.wur.nl/Internet/webdocs/ilri-publicaties/publicaties/Pub57/Pub57.pdf
  11. The energy balance of groundwater flow applied to subsurface drainage in anisotropic soils by pipes or ditches with entrance resistance. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands. On line: http://www.waterlog.info/pdf/enerart.pdf . Paper based on: R.J. Oosterbaan, J. Boonstra and K.V.G.K. Rao, 1996, “The energy balance of groundwater flow”. Published in V.P.Singh and B.Kumar (eds.), Subsurface-Water Hydrology, p. 153-160, Vol.2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. . On line: http://www.waterlog.info/pdf/enerbal.pdf. The corresponding free EnDrain program can be downloaded from: http://www.waterlog.info/endrain.htm
  12. Subsurface drainage by (tube)wells, 9 pp. Explanation of equations used in the WellDrain model. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On line: http://www.waterlog.info/pdf/wellspac.pdf. The corresponding free WellDrain program can be downloaded from : http://www.waterlog.info/weldrain.htm
  13. Book: Bear, J. . 1972 . Dynamics of Fluids in Porous Media . . 0-486-65675-6.
  14. Table 4.4 James K. Mitchell, Kenichi Soga, Fundamentals of SoilBehavior, third ed., John Wiley & Sons Inc., Hoboken, NJ, 2005, 577 pp., ISBN 0-471-46302-7.
  15. Nagaraj, T. S., Pandian, N. S., and Narasimha Raju, P. S. R. 1991. An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes, Indian Geotechnical Journal, Vol. 21, No. 3, pp. 271–282

External links