Holomorphic separability explained
In mathematics in complex analysis, the concept of holomorphic separability is a measure of the richness of the set of holomorphic functions on a complex manifold or complex-analytic space.
Formal definition
is said to be holomorphically separable, if whenever
x ≠
y are two points in
, there exists a
holomorphic function
, such that
f(
x) ≠
f(
y).
[1] Often one says the holomorphic functions separate points.
Usage and examples
- All complex manifolds that can be mapped injectively into some
are holomorphically separable, in particular, all
domains in
and all
Stein manifolds.
- A holomorphically separable complex manifold is not compact unless it is discrete and finite.
- The condition is part of the definition of a Stein manifold.
References
- Book: 9783110838350. [{{Google books|4YVXCgewhTIC|Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory|plainurl=yes}} Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory]. Kaup. Ludger. Kaup. Burchard. 9 May 2011. Walter de Gruyter .
- 2034564 . 10.1090/S0002-9939-1960-0170034-8. Holomorphic mappings of complex spaces. 1960. Narasimhan. Raghavan. Proceedings of the American Mathematical Society. 11. 5. 800–804. free.
- 1108.2078. Noguchi. Junjiro. Another Direct Proof of Oka's Theorem (Oka IX). 2011. 3086750. J. Math. Sci. Univ. Tokyo. 19. 4.
- Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes . Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris. 118–121. Remmert. Reinhold. 1956. 243. fr. 0070.30401.
Notes and References
- Book: Grauert, Hans . Theory of Stein Spaces . Remmert . Reinhold . Springer-Verlag . 2004 . 3-540-00373-8 . Reprint of the 1979 . 2004 . 117 . Huckleberry . Alan.