Hexacode Explained

GF(4)=\{0,1,\omega,\omega2\}

of 4 elements defined by

H=\{(a,b,c,f(1),f(\omega),f(\omega2)):f(x):=ax2+bx+c;a,b,c\inGF(4)\}.

It is a 3-dimensional subspace of the vector space of dimension 6 over

GF(4)

.Then

H

contains 45 codewords of weight 4, 18 codewords of weight 6 andthe zero word. The full automorphism group of the hexacode is

3.S6

. The hexacode can be used to describe the Miracle Octad Generatorof R. T. Curtis.

References

. John Horton Conway . Sloane, Neil J. A. . Neil Sloane . 1998 . Sphere Packings, Lattices and Groups . registration . (3rd ed.) . Springer-Verlag . New York . 0-387-98585-9.