In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex). Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar (have the same shape), and so they are collectively known as the heptagonal triangle. Its angles have measures
\pi/7,2\pi/7,
4\pi/7,
The heptagonal triangle's nine-point center is also its first Brocard point.[1]
The second Brocard point lies on the nine-point circle.[2]
The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.[1]
The distance between the circumcenter O and the orthocenter H is given by[2]
OH=R\sqrt{2},
where R is the circumradius. The squared distance from the incenter I to the orthocenter is[2]
| ||||
IH |
,
where r is the inradius.
The two tangents from the orthocenter to the circumcircle are mutually perpendicular.[2]
The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy[3]
\begin{align} a2&=c(c-b),\\[5pt] b2&=a(c+a),\\[5pt] c2&=b(a+b),\\[5pt]
1 | |
a |
&=
1 | |
b |
+
1 | |
c |
\end{align}
(the latter[2] being the optic equation) and hence
ab+ac=bc,
and[3]
b3+2b2c-bc2-c3=0,
c3-2c2a-ca2+a3=0,
a3-2a2b-ab2+b3=0.
Thus –b/c, c/a, and a/b all satisfy the cubic equation
t3-2t2-t+1=0.
However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.
The approximate relation of the sides is
b ≈ 1.80193 ⋅ a, c ≈ 2.24698 ⋅ a.
a2 | |
bc |
, -
b2 | |
ca |
, -
c2 | |
ab |
t3+4t2+3t-1=0.
We also have[4]
a3 | |
bc2 |
, -
b3 | |
ca2 |
,
c3 | |
ab2 |
t3-t2-9t+1=0.
We also have[4]
a3 | |
b2c |
,
b3 | |
c2a |
, -
c3 | |
a2b |
t3+5t2-8t+1=0.
We also have[2]
b2-a2=ac,
c2-b2=ab,
a2-c2=-bc,
and[2]
b2 | + | |
a2 |
c2 | + | |
b2 |
a2 | |
c2 |
=5.
We also have[4]
ab-bc+ca=0,
a3b-b3c+c3a=0,
a4b+b4c-c4a=0,
a11b3-b11c3+c11a3=0.
The altitudes ha, hb, and hc satisfy
ha=hb+hc
and
| ||||
h | ||||
c |
.
The altitude from side b (opposite angle B) is half the internal angle bisector
wA
2hb=wA.
Here angle A is the smallest angle, and B is the second smallest.
wA,wB,
wC
wA=b+c,
wB=c-a,
wC=b-a.
The triangle's area is
A= | \sqrt{7 |
where R is the triangle's circumradius.
We have[2]
a2+b2+c2=7R2.
We also have[6]
a4+b4+c4=21R4.
a6+b6+c6=70R6.
The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation
8x3+28x2+14x-7=0.
In addition,[2]
1 | + | |
a2 |
1 | + | |
b2 |
1 | = | |
c2 |
2 | |
R2 |
.
We also have[6]
1 | + | |
a4 |
1 | + | |
b4 |
1 | = | |
c4 |
2 | |
R4 |
.
1 | + | |
a6 |
1 | + | |
b6 |
1 | = | |
c6 |
17 | |
7R6 |
.
In general for all integer n,
a2n+b2n+c2n=g(n)(2R)2n
g(-1)=8, g(0)=3, g(1)=7
g(n)=7g(n-1)-14g(n-2)+7g(n-3).
We also have[6]
2b2-a2=\sqrt{7}bR, 2c2-b2=\sqrt{7}cR, 2a2-c2=-\sqrt{7}aR.
We also have[4]
a3c+b3a-c3b=-7R4,
a4c-b4a+c4b=7\sqrt{7}R5,
a11c3+b11a3-c11b3=-7317R14.
The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.[2]
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).[2]
The various trigonometric identities associated with the heptagonal triangle include these:[2] [7] [6] [4]
\sin^2\!A \!&\! \times \!&\! \sin^2\!B \!&\! \times \!&\! \sin^2\!C \!&\! = \!&\! \frac \\[2pt] \sin^2\!A \!&\! + \!&\! \sin^2\!B \!&\! + \!&\! \sin^2\!C \!&\! = \!&\! \frac \\[2pt] \cos^2\!A \!&\! + \!&\! \cos^2\!B \!&\! + \!&\! \cos^2\!C \!&\! = \!&\! \frac \\[2pt] \tan^2\!A \!&\! + \!&\! \tan^2\!B \!&\! + \!&\! \tan^2\!C \!&\! = \!&\! 21 \\[2pt] \sec^2\!A \!&\! + \!&\! \sec^2\!B \!&\! + \!&\! \sec^2\!C \!&\! = \!&\! 24 \\[2pt] \csc^2\!A \!&\! + \!&\! \csc^2\!B \!&\! + \!&\! \csc^2\!C \!&\! = \!&\! 8 \\[2pt] \cot^2\!A \!&\! + \!&\! \cot^2\!B \!&\! + \!&\! \cot^2\!C \!&\! = \!&\! 5 \\[8pt]
\sin^4\!A \!&\! + \!&\! \sin^4\!B \!&\! + \!&\! \sin^4\!C \!&\! = \!&\! \frac \\[2pt] \cos^4\!A \!&\! + \!&\! \cos^4\!B \!&\! + \!&\! \cos^4\!C \!&\! = \!&\! \frac \\[2pt] \sec^4\!A \!&\! + \!&\! \sec^4\!B \!&\! + \!&\! \sec^4\!C \!&\! = \!&\! 416 \\[2pt] \csc^4\!A \!&\! + \!&\! \csc^4\!B \!&\! + \!&\! \csc^4\!C \!&\! = \!&\! 32 \\[8pt]\end
64y3-112y2+56y-7=0
\sin2A, \sin2B, \sin2C.
The positive solution of the cubic equation
x3+x2-2x-1=0
2\cosB.
The roots of the cubic equation
x3-\tfrac{\sqrt7}{2}x2+\tfrac{\sqrt7}{8}=0
\sin2A, \sin2B, \sin2C.
The roots of the cubic equation
x3-\tfrac{\sqrt7}{2}x2+\tfrac{\sqrt7}{8}=0
-\sinA, \sinB, \sinC.
The roots of the cubic equation
x3+\tfrac{1}{2}x2-\tfrac{1}{2}x-\tfrac{1}{8}=0
-\cosA, \cosB, \cosC.
The roots of the cubic equation
x3+\sqrt{7}x2-7x+\sqrt{7}=0
\tanA, \tanB, \tanC.
x3-21x2+35x-7=0
\tan2A, \tan2B, \tan2C.
For an integer, let
Value of : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S(n) | 3 | \tfrac{\sqrt7}{2} | \tfrac{7}{22} | \tfrac{\sqrt7}{2} | \tfrac{7 ⋅ 3}{24} | \tfrac{7\sqrt7}{24} | \tfrac{7 ⋅ 5}{25} | \tfrac{72\sqrt7}{27} | \tfrac{72 ⋅ 5}{28} | \tfrac{7 ⋅ 25\sqrt7}{29} | \tfrac{72 ⋅ 9}{29} | \tfrac{72 ⋅ 13\sqrt7}{211 | \tfrac{72 ⋅ 33}{211 | \tfrac{72 ⋅ 3\sqrt7}{29} | \tfrac{74 ⋅ 5}{214 | \tfrac{72 ⋅ 179\sqrt7}{215 | \tfrac{73 ⋅ 131}{216 | \tfrac{73 ⋅ 3\sqrt7}{212 | \tfrac{73 ⋅ 493}{218 | \tfrac{73 ⋅ 181\sqrt7}{218 | \tfrac{75 ⋅ 19}{219 |
S(-n) | 3 | 0 | 23 | -\tfrac{23 ⋅ 3\sqrt7}{7} | 25 | -\tfrac{25 ⋅ 5\sqrt7}{7} | \tfrac{26 ⋅ 17}{7} | -27\sqrt{7} | \tfrac{29 ⋅ 11}{7} | -\tfrac{210 ⋅ 33\sqrt7}{72} | \tfrac{210 ⋅ 29}{7} | -\tfrac{214 ⋅ 11\sqrt7}{72} | \tfrac{212 ⋅ 269}{72} | -\tfrac{213 ⋅ 117\sqrt7}{72} | \tfrac{214 ⋅ 51}{7} | -\tfrac{221 ⋅ 17\sqrt7}{73} | \tfrac{217 ⋅ 237}{72} | -\tfrac{217 ⋅ 1445\sqrt7}{73} | \tfrac{219 ⋅ 2203}{73} | -\tfrac{219 ⋅ 1919\sqrt7}{73} | \tfrac{220 ⋅ 5851}{73} |
C(n) | 3 | -\tfrac{1}{2} | \tfrac{5}{4} | -\tfrac{1}{2} | \tfrac{13}{16} | -\tfrac{1}{2} | \tfrac{19}{32} | -\tfrac{57}{128} | \tfrac{117}{256} | -\tfrac{193}{512} | \tfrac{185}{512} | ||||||||||
C(-n) | 3 | -4 | 24 | -88 | 416 | -1824 | 8256 | -36992 | 166400 | -747520 | 3359744 | ||||||||||
T(n) | 3 | -\sqrt{7} | 7 ⋅ 3 | -31\sqrt{7} | 7 ⋅ 53 | -7 ⋅ 87\sqrt{7} | 7 ⋅ 1011 | -72 ⋅ 239\sqrt{7} | 72 ⋅ 2771 | -7 ⋅ 32119\sqrt{7} | 72 ⋅ 53189 | ||||||||||
T(-n) | 3 | \sqrt{7} | 5 | \tfrac{25\sqrt7}{7} | 19 | \tfrac{103\sqrt7}{7} | \tfrac{563}{7} | 7 ⋅ 9\sqrt{7} | \tfrac{2421}{7} | \tfrac{13297\sqrt7}{72} | \tfrac{10435}{7} |
We also have Ramanujan type identities,[6] [10]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! -\sqrt[18] \times \sqrt[3] \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! \sqrt[18] \times \sqrt[3] \\[6pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! \sqrt[3] \\[8pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! \sqrt[3] \\[6pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! -\sqrt[18] \times \sqrt[3] \\[2pt] \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! \sqrt[18] \times \sqrt[3]\end
\frac \!&\! + \!&\! \frac \!&\! + \!&\! \frac \!&\! = \!&\! \frac \times \sqrt[3] \\[2pt]
\frac \!&\! + \!&\! \frac \!&\! + \!&\! \frac \!&\! = \!&\! \sqrt[3] \\[6pt]
\frac \!&\! + \!&\! \frac \!&\! + \!&\! \frac \!&\! = \!&\! \sqrt[3] \\[2pt]
\frac \!&\! + \!&\! \frac \!&\! + \!&\! \frac \!&\! = \!&\! -\frac \times \sqrt[3] \\[2pt]
\frac \!&\! + \!&\! \frac \!&\! + \!&\! \frac \!&\! = \!&\! \frac \times \sqrt[3] \end
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! 0 \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! -\frac \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! 0 \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! -3\times \frac \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! 0 \\[2pt]
\sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! + \!&\! \sqrt[3] \!&\! = \!&\! -61\times \frac. \end[8]