Helium star explained

A helium star is a class O or B star (blue), which has extraordinarily strong helium lines and weaker than normal hydrogen lines, indicating strong stellar winds and a mass loss of the outer envelope. Extreme helium stars (EHe) entirely lack hydrogen in their spectra. Pure helium stars lie on or near a helium main sequence, analogous to the main sequence formed by the more common hydrogen stars.[1]

Terminology

Previously, a helium star was a synonym for a B-type star, but this use of for the term is considered obsolete.[2]

A helium star is also a term for a hypothetical star that could occur if two helium white dwarfs with a combined mass of at least 0.5 solar masses merge and subsequently start nuclear fusion of helium, with a lifetime of a few hundred million years. This may only happen if these two binary masses share the same type of envelope phase. It is believed this is the origin of the extreme helium stars.

Description

The helium main sequence is a line in the HR diagram where unevolved helium stars lie. It lies mostly parallel and to the left (i.e. higher temperatures) of the better-known hydrogen main sequence, although at high masses and luminosities it bends to the right and even crosses the hydrogen main sequence. Therefore, pure helium stars have a maximum temperature, between about and depending on metallicity, because high luminosity causes dramatic inflation of the stellar envelope.[3]

Helium stars' great capability of transforming into other stellar objects has been observed over recent years since they were first identified. The blue progenitor system of the supernova type Iax SN 2012Z in the spiral galaxy is similar to the progenitor of the Galactic helium nova suggesting that was the explosion of a white dwarf accreting from a helium-star companion. It is observed to have caused a growing helium star that has the potential to transform into a red giant after losing its hydrogen envelope in the future.[4]

See also

Notes and References

  1. 2004A&A...419..645Y. Helium accreting CO white dwarfs with rotation: Helium novae instead of double detonation. Astronomy and Astrophysics. 419. 2. 645–652. Yoon. S.-C.. Langer. N.. 2004. astro-ph/0402288. 10.1051/0004-6361:20035823. 7367981.
  2. 1926ApJ....64....1F . Radial velocities of 368 helium stars . Frost . E. B. . Barrett . S. B. . Struve . O. . The Astrophysical Journal . 1926 . 64 . 1 . 10.1086/142986 . 1084541 .
  3. Köhler . K. . Langer . N. . de Koter . A. . De Mink . S.E. . Crowther . P.A. . Evans . C.J. . Gräfener . G. . Sana . H. . Sanyal . D. . Schneider . F.R.N. . Vink . J.S. . 6 . 2015 . The evolution of rotating very massive stars with LMC composition . Astronomy & Astrophysics . 573 . A71 . 1501.03794 . 2015A&A...573A..71K . 10.1051/0004-6361/201424356 . 28962151 .
  4. McCully . Curtis . 2014 . A luminous, blue progenitor system for the type Iax supernova 2012Z . . 512 . 7512 . 54–56 . 2014Natur.512...54M . 1408.1089 . 10.1038/nature13615 . 25100479 . 4464556 .