Haplogroup Explained

A haplotype is a group of alleles in an organism that are inherited together from a single parent, and a haplogroup (haploid from the Greek, Modern (1453-);: ἁπλοῦς, haploûs, "onefold, simple" and English: group) is a group of similar haplotypes that share a common ancestor with a single-nucleotide polymorphism mutation. More specifically, a haplotype is a combination of alleles at different chromosomal regions that are closely linked and that tend to be inherited together. As a haplogroup consists of similar haplotypes, it is usually possible to predict a haplogroup from haplotypes. Haplogroups pertain to a single line of descent. As such, membership of a haplogroup, by any individual, relies on a relatively small proportion of the genetic material possessed by that individual.

Each haplogroup originates from, and remains part of, a preceding single haplogroup (or paragroup). As such, any related group of haplogroups may be precisely modelled as a nested hierarchy, in which each set (haplogroup) is also a subset of a single broader set (as opposed, that is, to biparental models, such as human family trees). Haplogroups can be further divided into subclades.

Haplogroups are normally identified by an initial letter of the alphabet, and refinements consist of additional number and letter combinations, such as (for example) . The alphabetical nomenclature was published in 2002 by the Y Chromosome Consortium.[1]

In human genetics, the haplogroups most commonly studied are Y-chromosome (Y-DNA) haplogroups and mitochondrial DNA (mtDNA) haplogroups, each of which can be used to define genetic populations. Y-DNA is passed solely along the patrilineal line, from father to son, while mtDNA is passed down the matrilineal line, from mother to offspring of both sexes. Neither recombines, and thus Y-DNA and mtDNA change only by chance mutation at each generation with no intermixture between parents' genetic material.

Haplogroup formation

Mitochondria are small organelles that lie in the cytoplasm of eukaryotic cells, such as those of humans. Their primary function is to provide energy to the cell. Mitochondria are thought to be reduced descendants of symbiotic bacteria that were once free living. One indication that mitochondria were once free living is that each contains a circular DNA, called mitochondrial DNA (mtDNA), whose structure is more similar to bacteria than eukaryotic organisms (see endosymbiotic theory). The overwhelming majority of a human's DNA is contained in the chromosomes in the nucleus of the cell, but mtDNA is an exception.An individual inherits their cytoplasm and the organelles contained by that cytoplasm exclusively from the maternal ovum (egg cell); sperm only pass on the chromosomal DNA, all paternal mitochondria are digested in the oocyte. When a mutation arises in a mtDNA molecule, the mutation is therefore passed down in a direct female line of descent. Mutations are changes in the nitrogen bases of the DNA sequence. Single changes from the original sequence are called single nucleotide polymorphisms (SNPs).

Human Y chromosomes are male-specific sex chromosomes; nearly all humans that possess a Y chromosome will be morphologically male. Although Y chromosomes are situated in the cell nucleus and paired with X chromosomes, they only recombine with the X chromosome at the ends of the Y chromosome; the remaining 95% of the Y chromosome does not recombine. Therefore, the Y chromosome and any mutations that arise in it are passed down in a direct male line of descent.

Other chromosomes, autosomes and X chromosomes (when another X chromosome is available to pair with it), share their genetic material during meiosis, the process of cell division which produces gametes. Effectively this means that the genetic material from these chromosomes gets mixed up in every generation, and so any new mutations are passed down randomly from parents to offspring.

The special feature that both Y chromosomes and mtDNA display is that mutations can accrue along a certain segment of both molecules and these mutations remain fixed in place on the DNA. Furthermore, the historical sequence of these mutations can also be inferred. For example, if a set of ten Y chromosomes (derived from ten different individuals) contains a mutation, A, but only five of these chromosomes contain a second mutation, B, then it must be the case that mutation B occurred after mutation A.

Furthermore, all ten individuals who carry the chromosome with mutation A are the direct male line descendants of the same man who was the first person to carry this mutation. The first man to carry mutation B was also a direct male line descendant of this man, but is also the direct male line ancestor of all men carrying mutation B. Series of mutations such as this form molecular lineages. Furthermore, each mutation defines a set of specific Y chromosomes called a haplogroup.

All humans carrying mutation A form a single haplogroup, and all humans carrying mutation B are part of this haplogroup, but mutation B also defines a more recent haplogroup (which is a subgroup or subclade) of its own to which humans carrying only mutation A do not belong. Both mtDNA and Y chromosomes are grouped into lineages and haplogroups; these are often presented as tree-like diagrams.

Human Y-chromosome DNA haplogroups

See main article: Human Y-chromosome DNA haplogroup. Human Y chromosome DNA (Y-DNA) haplogroups are named from A to T, and are further subdivided using numbers and lower case letters. Y chromosome haplogroup designations are established by the Y Chromosome Consortium.[2]

Y-chromosomal Adam is the name given by researchers to the male who is the most recent common patrilineal (male-lineage) ancestor of all living humans.

Major Y-chromosome haplogroups, and their geographical regions of occurrence (prior tothe recent European colonization), include:

Groups without mutation M168

Groups with mutation M168

(mutation M168 occurred ~50,000 bp)

Groups with mutation M89

(mutation M89 occurred ~45,000 bp)

Groups with mutations L15 & L16

Groups with mutation M9

(mutation M9 occurred ~40,000 bp)

Groups with mutation M526

Human mitochondrial DNA haplogroups

See main article: Human mitochondrial DNA haplogroup. Human mtDNA haplogroups are lettered:A,B,C,CZ,D,E,F,G,H,HV,I,J,pre-JT,JT,K,L0,L1,L2,L3,L4,L5,L6,M,N,O,P,Q,R,R0,S,T,U,V,W,X,Y, andZ. The most up-to-date version of the mtDNA tree is maintained by Mannis van Oven on the PhyloTree website.[6]

Mitochondrial Eve is the name given by researchers to the woman who is the most recent common matrilineal (female-lineage) ancestor of all living humans.

Defining populations

Haplogroups can be used to define genetic populations and are often geographically oriented. For example, the following are common divisions for mtDNA haplogroups:

The mitochondrial haplogroups are divided into three main groups, which are designated by the sequential letters L, M, N.Humanity first split within the L group between L0 and L1-6. L1-6 gave rise to other L groups, one of which, L3, split into the M and N group.

The M group comprises the first wave of human migration which is thought to have evolved outside of Africa, following an eastward route along southern coastal areas. Descendant lineages of haplogroup M are now found throughout Asia, the Americas, and Melanesia, as well as in parts of the Horn of Africa and North Africa; almost none have been found in Europe. The N haplogroup may represent another macrolineage that evolved outside of Africa, heading northward instead of eastward. Shortly after the migration, the large R group split off from the N.

Haplogroup R consists of two subgroups defined on the basis of their geographical distributions, one found in southeastern Asia and Oceania and the other containing almost all of the modern European populations. Haplogroup N(xR), i.e. mtDNA that belongs to the N group but not to its R subgroup, is typical of Australian aboriginal populations, while also being present at low frequencies among many populations of Eurasia and the Americas.

The L type consists of nearly all Africans.

The M type consists of:

M1 – Ethiopian, Somali and Indian populations. Likely due to much gene flow between the Horn of Africa and the Arabian Peninsula (Saudi Arabia, Yemen, Oman), separated only by a narrow strait between the Red Sea and the Gulf of Aden.

CZ – Many Siberians; branch C – Some Amerindian; branch Z – Many Saami, some Korean, some North Chinese, some Central Asian populations.

D – Some Amerindians, many Siberians and northern East Asians

E – Malay, Borneo, Philippines, Taiwanese aborigines, Papua New Guinea

G – Many Northeast Siberians, northern East Asians, and Central Asians

Q – Melanesian, Polynesian, New Guinean populations

The N type consists of:

A – Found in many Amerindians and some East Asians and Siberians

I – 10% frequency in Northern, Eastern Europe

S – Some Indigenous Australian (First Nations People of Australia)

W – Some Eastern Europeans, South Asians, and southern East Asians

X – Some Amerindians, Southern Siberians, Southwest Asians, and Southern Europeans

Y – Most Nivkhs and people of Nias; many Ainus, Tungusic people, and Austronesians; also found with low frequency in some other populations of Siberia, East Asia, and Central Asia

R – Large group found within the N type. Populations contained therein can be divided geographically into West Eurasia and East Eurasia. Almost all European populations and a large number of Middle-Eastern population today are contained within this branch. A smaller percentage is contained in other N type groups (See above). Below are subclades of R:

B – Some Chinese, Tibetans, Mongolians, Central Asians, Koreans, Amerindians, South Siberians, Japanese, Austronesians

F – Mainly found in southeastern Asia, especially Vietnam; 8.3% in Hvar Island in Croatia.[8]

R0 – Found in Arabia and among Ethiopians and Somalis; branch HV (branch H; branch V) – Europe, Western Asia, North Africa;

Pre-JT – Arose in the Levant (modern Lebanon area), found in 25% frequency in Bedouin populations; branch JT (branch J; branch T) – North, Eastern Europe, Indus, Mediterranean

U – High frequency in West Eurasia, Indian sub-continent, and Algeria, found from India to the Mediterranean and to the rest of Europe; U5 in particular shows high frequency in Scandinavia and Baltic countries with the highest frequency in the Sami people.

Y-chromosome and MtDNA geographic haplogroup assignation

Here is a list of Y-chromosome and MtDNA geographic haplogroup assignation proposed by Bekada et al. 2013.[9]

Y-chromosome

According to SNPS haplogroups which are the age of the first extinction event tend to be around 45–50 kya. Haplogroups of the second extinction event seemed to diverge 32–35 kya according to Mal'ta. The ground zero extinction event appears to be Toba during which haplogroup CDEF* appeared to diverge into C, DE and F. C and F have almost nothing in common while D and E have plenty in common. Extinction event #1 according to current estimates occurred after Toba, although older ancient DNA could push the ground zero extinction event to long before Toba, and push the first extinction event here back to Toba. Haplogroups with extinction event notes by them have a dubious origin and this is because extinction events lead to severe bottlenecks, so all notes by these groups are just guesses. Note that the SNP counting of ancient DNA can be highly variable meaning that even though all these groups diverged around the same time no one knows when.[10] [11]

OriginHaplogroupMarker
Europe (Second Extinction Event?)IM170, M253, P259, M227, M507
EuropeI1bP215, M438, P37.2, M359, P41.2
EuropeI1b2M26
EuropeI1cM223, M284, P78, P95
EuropeJ2a1M47
EuropeJ2a2M67, M166
EuropeJ2a2aM92
EuropeJ2bM12, M102, M280, M241
EuropeR1b1b1aM412, P310
EuropeR1b1b1a1L11
EuropeR1b1b1a1aU106
EuropeR1b1b1a1bU198, P312, S116
EuropeR1b1b1a1b1U152
EuropeR1b1b1a1b2M529
EuropeR1b1b1a1b3,4M65, M153
EuropeR1b1b1a1b5SRY2627
South Asia or MelanesiaC1(formerly known as CxC3)Z1426
North AsiaC2 (formerly known as C3)M217+
Indonesia or South Asia F M89, M282
Europe (Caucasus) GM201, M285, P15, P16, M406
South AsiaHM69, M52, M82, M197, M370
Europe or Middle East J1M304, M267, P58, M365, M368, M369
Europe or Middle EastJ2M172, M410, M158, M319, DYS445=6, M339, M340
West of Burma in Eurasia (First Extinction Event?)[12]
Indonesia (First Extinction Event?) K2 (NOPS) M526
South AsiaLM11, M20, M27, M76, M317, M274, M349, M357
East Asia, South East AsiaNM231, M214, LLY22g, Tat, M178
East Asia, South East Asia, South Asia OM175, M119
Indonesia, Philippines P (xQR) 92R7, M207, M173, M45
South Asia, Siberia R and Q (QR) split MEH2, M242, P36.2, M25, M346
Middle East, Europe, Siberia, South AsiaR1a1M420, M17, M198, M204, M458
Anatolia, South East Europe ?R1bM173, M343, P25, M73
Europe R1b1bM269
Europe R1b1b1L23
Pakistan, India R2M479, M124
Middle EastTM70
North Africa E1b1b1 M35
North AfricaE1b1b1aM78
West AsiaE1b1b1a2V13
North AfricaE1b1b1a1V12
North AfricaE1b1b1a1bV32
North AfricaE1b1b1a3V22
North AfricaE1b1b1a4V65
North AfricaE1b1b1bM81
North Africa E1b1b1cM123, M34
West Africa, North AfricaAM91, M13
East AfricaBM60, M181, SRY10831.1, M150, M109, M112
Asia, AfricaDEM1, YAP, M174, M40, M96, M75, M98
East Asia, NepalDM174
West Africa (First Extinction Event?)E1a M33
East Africa (First Extinction Event is the split between E1b1 and E1a, second extinction event is the split between E1b1b and E1b1a)E1b1P2, M2, U175, M191
Middle EastJ1P58

mtDNA

OriginHaplogroup
EuropeH1
EuropeH11a
EuropeH1a
EuropeH1b
EuropeH2a
EuropeH3
EuropeH5a
EuropeH6a
EuropeH7
EuropeHV0/HV0a/V
EuropeI4
EuropeJ1c7
EuropeJ2b1
EuropeT2b*
EuropeT2b4
EuropeT2e
EuropeU4c1
EuropeU5*
EuropeU5a
EuropeU5a1b1
EuropeU5b*
EuropeU5b1b*
EuropeU5b1c
EuropeU5b3
EuropeX2c'e
Middle EastI
Middle EastA
Middle EastB
Middle EastC/Z
Middle EastD/G/M9/E
IndiaF
Middle EastH*
Middle EastH13a1
Middle EastH14a
Middle EastH20
Middle EastH2a1
Middle EastH4
Middle EastH6b
Middle EastH8
Middle EastHV1
Middle EastI1
Middle EastJ / J1c / J2
Middle EastJ1a'b'e
Middle EastJ1b1a1
Middle EastJ1b2a
Middle EastJ1d / J2b
Middle EastJ1d1
Middle EastJ2a
Middle EastJ2a2a1
Middle EastK*
Middle EastK1a*
Middle EastK1b1*
Middle EastN1a*
Middle EastN1b
Middle EastN1c
Middle EastN2
Middle EastN9
Middle EastR*
Middle EastR0a
Middle EastT
Middle EastT1*
West AsiaT1a
Middle EastT2
Middle EastT2c
Middle EastT2i
Middle EastU1*
Middle EastU2*
Middle EastU2e
EurasiaU3*
Middle EastU4
Middle EastU4a*
Middle EastU7
Middle EastU8*
Middle EastU9a
Middle EastX
Middle EastX1a
Middle EastX2b1
North AfricaL3e5
North AfricaM1
North AfricaM1a1
North AfricaU6a
North AfricaU6a1'2'3
North AfricaU6b'c'd
East AfricaL0*
East AfricaL0a1
East AfricaL0a1b
East AfricaL0a2*
East AfricaL3c/L4/M
East AfricaL3d1a1
East AfricaL3d1d
East AfricaL3e1*
East AfricaL3f*
East AfricaL3h1b*
East AfricaL3i*
East AfricaL3x*
East AfricaL4a'b*
East AfricaL5*
East AfricaL6
East AfricaN* / M* / L3*
West AfricaL1b*
West AfricaL1b3
West AfricaL1c*
West AfricaL1c2
West AfricaL2*
West AfricaL2a
West AfricaL2a1*
West AfricaL2a1a2'3'4
West AfricaL2a1b
West AfricaL2a1b'f
West AfricaL2a1c1'2
West AfricaL2a1(16189)
West AfricaL2a2
West AfricaL2b*
West AfricaL2c1'2
West AfricaL2d
West AfricaL2e
West AfricaL3b
West AfricaL3b1a3
West AfricaL3b(16124!)
West AfricaL3b2a
West AfricaL3d*
West AfricaL3e2'3'4
West AfricaL3f1b*

See also

External links

General

all DNA haplogroups

Y-Chromosome

Y chromosome DNA haplogroups

Mitochondrial DNA haplogroups

Software

Notes and References

  1. Consortium . The Y Chromosome . A Nomenclature System for the Tree of Human Y-Chromosomal Binary Haplogroups . Genome Research . Cold Spring Harbor Laboratory . 12 . 2 . 2002-02-01 . 1088-9051 . 10.1101/gr.217602 . 339–348. 11827954 . 155271 .
  2. Web site: Y Chromosome Consortium . 2005-07-27 . https://web.archive.org/web/20170116195823/http://ycc.biosci.arizona.edu/ . 2017-01-16 . dead .
  3. G. David . Poznik . Yali . Xue . Fernando L. . Mendez . etal . Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences . . 2016 . 48 . 6 . 593–599 . 10.1038/ng.3559 . 27111036 . 4884158 .
  4. Monika . Karmin . Lauri . Saag . Mário . Vicente . etal . 2015 . A recent bottleneck of Y chromosome diversity coincides with a global change in culture . Genome Research . 25 . 4. 459–466 . 10.1101/gr.186684.114 . 25770088 . 4381518 .
  5. Rootsi S, Magri C, Kivisild T, Benuzzi G, Help H, Bermisheva M, Kutuev I, Barać L, Pericić M, Balanovsky O, Pshenichnov A, Dion D, Grobei M, Zhivotovsky LA, Battaglia V, Achilli A, Al-Zahery N, Parik J, King R, Cinnioğlu C, Khusnutdinova E, Rudan P, Balanovska E, Scheffrahn W, Simonescu M, Brehm A, Goncalves R, Rosa A, Moisan JP, Chaventre A, Ferak V, Füredi S, Oefner PJ, Shen P, Beckman L, Mikerezi I, Terzić R, Primorac D, Cambon-Thomsen A, Krumina A, Torroni A, Underhill PA, Santachiara-Benerecetti AS, Villems R, Semino O . Phylogeography of Y-chromosome haplogroup I reveals distinct domains of prehistoric gene flow in europe . American Journal of Human Genetics . 75 . 1 . 128–37 . Jul 2004 . 15162323 . 10.1086/422196 . 1181996 . 2007-03-08 . https://web.archive.org/web/20090624135411/http://www.familytreedna.com/pdf/DNA.RootsiHaplogroupISpread.pdf . 2009-06-24 . dead .
  6. Web site: PhyloTree.org .
  7. Loogväli EL, Roostalu U, Malyarchuk BA, Derenko MV, Kivisild T, Metspalu E, Tambets K, Reidla M, Tolk HV, Parik J, Pennarun E, Laos S, Lunkina A, Golubenko M, Barac L, Pericic M, Balanovsky OP, Gusar V, Khusnutdinova EK, Stepanov V, Puzyrev V, Rudan P, Balanovska EV, Grechanina E, Richard C, Moisan JP, Chaventré A, Anagnou NP, Pappa KI, Michalodimitrakis EN, Claustres M, Gölge M, Mikerezi I, Usanga E, Villems R . 6 . Disuniting uniformity: a pied cladistic canvas of mtDNA haplogroup H in Eurasia . Mol. Biol. Evol. . 21 . 11 . 2012–21 . 2004 . 15254257 . 10.1093/molbev/msh209 . free .
  8. Tolk HV, Barac L, Pericic M, Klaric IM, Janicijevic B, Campbell H, Rudan I, Kivisild T, Villems R, Rudan P . The evidence of mtDNA haplogroup F in a European population and its ethnohistoric implications . European Journal of Human Genetics . 9 . 9 . 717–23 . Sep 2001 . 11571562 . 10.1038/sj.ejhg.5200709 . free .
  9. Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM . Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape . PLOS ONE . 8 . 2 . e56775 . 23431392 . 10.1371/journal.pone.0056775 . 3576335 . 2013. 2013PLoSO...856775B . free .
  10. Web site: Common genetic ancestors lived during roughly same time period. 1 Aug 2013. 23 Jan 2015.
  11. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, Rasmussen S, Stafford TW, Orlando L, Metspalu E, Karmin M, Tambets K, Rootsi S, Mägi R, Campos PF, Balanovska E, Balanovsky O, Khusnutdinova E, Litvinov S, Osipova LP, Fedorova SA, Voevoda MI, DeGiorgio M, Sicheritz-Ponten T, Brunak S, Demeshchenko S, Kivisild T, Villems R, Nielsen R, Jakobsson M, Willerslev E . Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans . Nature . 505 . 7481 . 87–91 . Jan 2014 . 24256729 . 10.1038/nature12736 . 4105016. 2014Natur.505...87R .
  12. Karafet TM, Mendez FL, Sudoyo H, Lansing JS, Hammer MF . Improved phylogenetic resolution and rapid diversification of Y-chromosome haplogroup K-M526 in Southeast Asia . European Journal of Human Genetics . 23 . 3 . 369–73 . Mar 2015 . 24896152 . 10.1038/ejhg.2014.106 . 4326703.