Type: | Johnson |
Faces: | 4 triangles 4 squares |
Edges: | 14 |
Vertices: | 8 |
Properties: | convex, honeycomb |
Net: | Johnson solid 26 net.png |
In geometry, the gyrobifastigium is a polyhedron that is constructed by attaching a triangular prism to square face of another one. It is an example of a Johnson solid. It is the only Johnson solid that can tile three-dimensional space.
The gyrobifastigium can be constructed by attaching two triangular prisms along corresponding square faces, giving a quarter-turn to one prism. These prisms cover the square faces so the resulting polyhedron has four equilateral triangles and four squares, making eight faces in total, an octahedron. Because its faces are all regular polygons and it is convex, the gyrobifastigium is classified as the Johnson solid that is enumerated as twenty-sixth Johnson solid
J26
The name of the gyrobifastigium comes from the Latin fastigium, meaning a sloping roof.[1] In the standard naming convention of the Johnson solids, bi- means two solids connected at their bases, and gyro- means the two halves are twisted with respect to each other.
Cartesian coordinates for the gyrobifastigium with regular faces and unit edge lengths may easily be derived from the formula of the height of unit edge length as follows:
To calculate the formula for the surface area and volume of a gyrobifastigium with regular faces and with edge length
a
A
V
The Schmitt–Conway–Danzer biprism (also called a SCD prototile[2]) is a polyhedron topologically equivalent to the gyrobifastigium, but with parallelogram and irregular triangle faces instead of squares and equilateral triangles. Like the gyrobifastigium, it can fill space, but only aperiodically or with a screw symmetry, not with a full three-dimensional group of symmetries. Thus, it provides a partial solution to the three-dimensional einstein problem.
The gyrated triangular prismatic honeycomb can be constructed by packing together large numbers of identical gyrobifastigiums.The gyrobifastigium is one of five convex polyhedra with regular faces capable of space-filling (the others being the cube, truncated octahedron, triangular prism, and hexagonal prism) and it is the only Johnson solid capable of doing so.