Display resolution standards explained

A display resolution standard is a commonly used width and height dimension (display resolution) of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized (e.g. by VESA[1] [2]) and typically given a name and an initialism which is descriptive of its dimensions.

The graphics display resolution is also known as the display mode or the video mode, although these terms usually include further specifications such as the image refresh rate and the color depth. The resolution itself only indicates the number of distinct pixels that can be displayed on a screen, which affects the sharpness and clarity of the image. It can be controlled by various factors, such as the type of display device, the signal format, the aspect ratio, and the refresh rate.[3]

Some graphics display resolutions are frequently referenced with a single number (e.g. in "1080p" or "4K"), which represents the number of horizontal or vertical pixels. More generally, any resolution can be expressed as two numbers separated by a multiplication sign (e.g. "1920×1080"), which represent the width and height in pixels.[4] Since most screens have a landscape format to accommodate the human field of view, the first number for the width (in columns) is larger than the second for the height (in lines), and this conventionally holds true for handheld devices that are predominatly or even exclusively used in portrait orientation.

The graphics display resolution is influenced by the aspect ratio, which is the ratio of the width to the height of the display. The aspect ratio determines how the image is scaled and stretched or cropped to fit the screen. The most common aspect ratios for graphics displays are 4:3, 16:10 (equal to 8:5), 16:9, and "21:9". The aspect ratio also affects the perceived size of objects on the screen.[5]

The native screen resolution together with the physical dimensions of the graphics display can be used to calculate its pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.Some graphics displays support multiple resolutions and aspect ratios, which can be changed by the user or by the software.[6] In particular, some devices use a hardware/native resolution that is a simple multiple of the recommended software/virtual resolutions in order to show finer details; marketing terms for this include "Retina display".

Overview

Height
(px)! colspan=9 scope=colgroup
Width (px) and standard classification if available
(1.25) (1.) (1.5) (1.6 ≈ φ) (1.) (1.775–1.8) (2.0–2.) (2.–2.4)
120
144 192
160
240432 FWQVGA
320
360
480960 FWVGA
540
576768 PAL
6001024 WSVGA (≈)
640
720
768
800
864
900
960
10241600 WSXGA
1050
10801280 1920 (F)HD / 2K 2160,
2280,
2340
2520, 2560 UWFHD
1152
1200
1280
14402880,
2960,
3040
3120,
3200,
3440 UWQHD
1536
1600
1620
1800
1920
20483200 WQSXGA (<-- = 1.5625-->)
2100
2160
2400
2560
2880
3072
3456
432010240 10K
ClassicWideUltra-wide

Aspect ratio

The favored aspect ratio of mass-market display industry products has changed gradually from 4:3, then to 16:10, then to 16:9, and has now changed to 18:9 for smartphones.[7] The 4:3 aspect ratio generally reflects older products, especially the era of the cathode ray tube (CRT). The 16:10 aspect ratio had its largest use in the 1995–2010 period, and the 16:9 aspect ratio tends to reflect post-2010 mass-market computer monitor, laptop, and entertainment products displays. On CRTs, there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non-square pixels (e.g. or on a 4:3 display).

The 4:3 aspect ratio was common in older television cathode ray tube (CRT) displays, which were not easily adaptable to a wider aspect ratio. When good quality alternate technologies (i.e., liquid crystal displays (LCDs) and plasma displays) became more available and less costly, around the year 2000, the common computer displays and entertainment products moved to a wider aspect ratio, first to the 16:10 ratio. The 16:10 ratio allowed some compromise between showing older 4:3 aspect ratio broadcast TV shows, but also allowing better viewing of widescreen movies. However, around the year 2005, home entertainment displays (i.e., TV sets) gradually moved from 16:10 to the 16:9 aspect ratio, for further improvement of viewing widescreen movies. By about 2007, virtually all mass-market entertainment displays were 16:9. In 2011, (Full HD, the native resolution of Blu-ray) was the favored resolution in the most heavily marketed entertainment market displays. The next standard, (4K UHD), was first sold in 2013.

Also in 2013, displays with (aspect ratio 64:27 or 2., however commonly referred to as "21:9" for easy comparison with 16:9) appeared, which closely approximate the common CinemaScope movie standard aspect ratio of 2.35–2.40. In 2014, "21:9" screens with pixel dimensions of (actual aspect ratio 43:18 or 2.3) became available as well.

The computer display industry maintained the 16:10 aspect ratio longer than the entertainment industry, but in the 2005–2010 period, computers were increasingly marketed as dual-use products, with uses in the traditional computer applications, but also as means of viewing entertainment content. In this time frame, with the notable exception of Apple, almost all desktop, laptop, and display manufacturers gradually moved to promoting only 16:9 aspect ratio displays. By 2011, the 16:10 aspect ratio had virtually disappeared from the Windows laptop display market (although Mac laptops are still mostly 16:10, including the 15" Retina MacBook Pro and the 13" Retina MacBook Pro). One consequence of this transition was that the highest available resolutions moved generally downward (i.e., the move from laptop displays to displays).

In response to usability flaws of now common 16:9 displays in office/professional applications, Microsoft and Huawei started to offer notebooks with a 3:2 aspect ratio. By 2021, Huawei also offers a monitor display offering this aspect ratio, targeted towards professional uses.

High-definition

See main article: High-definition television.

See also: Standard-definition television.

Name
H (px) V (px) H:V H × V (Mpx) VESA
640 360 16:9 0.230
960 540 16:9 0.518
HD<--SHD, hD, HDR, HD-1--> 1280 720 16:9 0.922
1600 900 16:9 1.440
FHD<--HD, HD-2--> 2K1920 1080 16:9 2.074
2560 1440 16:9 3.686
3200 1800 16:9 5.760
4K3840 2160 16:9 8.294
5K5120 2880 16:9 14.746
8K7680 4320 16:9 33.178
16K15360 8640 16:9 132.710

All standard HD resolutions share a aspect ratio, although some derived resolutions with smaller or larger ratios also exist, e.g. and, respectively. Most of the narrower resolutions are only used for storing, not for displaying videos, while the wider resolutions are often available as physical displays. YouTube, for instance, recommends users upload videos in a 16:9 format with 240, 360, 480 (SD), 720, 1080 (HD), 1440, 2160 (4K) or 4320 (8K) lines.[8]

While the monikers for those resolutions originally all used a letter prefix with "HD" for the multiplier, and possibly a "+" suffix for intermediate or taller formats, the newer, larger formats tend to be used with "K" notation for thousands of pixels of horizontal resolution, but may be disambiguated by a system qualifier that includes "HD", e.g. "8K UHD" instead of just "8K".

(nHD)

nHD (ninth HD, not "nano HD")[9] is a display resolution of pixels, which is exactly one-ninth of a Full HD (1080p) frame and one-quarter of an HD (720p) frame. Notably, it is neither "nFHD" nor which would be a about ninth of "HD" resolution. Pixel doubling (vertically and horizontally) nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame.

One drawback of this resolution regarding encoding is that the number of lines is not an even multiple of 16, which is a common macroblock size for video codecs. Video frames encoded with pixel macroblocks would be padded to and the added pixels would be cropped away at playback. H.264 codecs have this padding and cropping ability built-in as standard. The same is true for qHD and 1080p but the relative amount of padding is more for lower resolutions such as nHD.

To avoid storing the eight lines of padded pixels, some people prefer to encode video at, which only has one stored padded line. When such video streams are either encoded from HD frames or played back on HD displays in full-screen mode (either 720p or 1080p) they are scaled by non-integer scale factors. True nHD frames on the other hand has integer scale factors, for example Nokia 808 PureView which has an nHD display.

(qHD)

Note: qHD is quarter HD; QHD is quad HD

qHD is a display resolution of pixels, which is exactly one-quarter of a Full HD (1080p) frame, in a 16:9 aspect ratio. Notably, it is neither "qFHD" nor which would be quarter of "HD" resolution (720p).

Some of the few tabletop TVs to use this as its native resolution from around 2005 were the Sony XEL-1 and the Sharp Aquos P50. Sharp marketed its ED TV sets with this resolution as PAL optimal.

Similar to DVGA, this resolution became popular for high-end smartphone displays in early 2011. Mobile phones including the Jolla, Sony Xperia C, HTC Sensation, Motorola Droid RAZR, LG Optimus L9, Microsoft Lumia 535, and Samsung Galaxy S4 Mini have displays with the qHD resolution, as does the PlayStation Vita portable game system.

(HD)

See main article: 720p.

The HD or 720p resolution of pixels stems from high-definition television (HDTV), where it originally used 50 or 60 frames per second. With its 16:9 aspect ratio, it is exactly 2 times the width and times the height of 4:3 VGA, which shares its aspect ratio and 480 line count with NTSC. HD, therefore, has exactly 3 times as many pixels as VGA, i.e. almost 1 megapixel.

In the mid-2000s, when the digital HD technology and standard debuted on the market, this type of resolution was often referred to by the branded name "HD ready" or "HDr" for short, which had specified it as a minimum resolution for devices to qualify for the certification. However, few screens have been built that use this resolution natively. Most employ 16:9 panels with 768 lines instead (WXGA), which resulted in odd numbers of pixels per line, i.e. 1365 are rounded to 1360, 1364, 1366 or even 1376, the next multiple of 16.

(HD+)

The HD+ resolution of pixels in a 16:9 aspect ratio is often referred to as "900p".

(FHD)

See main article: 1080p.

FHD (Full HD) is the resolution used by the 1080p and 1080i HDTV video formats. It has a 16:9 aspect ratio and 2,073,600 total pixels, i.e. very close to 2 megapixels, and is exactly 50% larger than 720p HD in each dimension for a total of 2.25 times as many pixels. When using interlacing, the uncompressed bandwidth requirements are similar to those of 720p at the same field rate (a 12.5% increase, as one field of 1080i video is 1,036,800 pixels, and one frame of 720p video is 921,600 pixels). Although the number of pixels is the same for 1080p and 1080i, the effective resolution is somewhat lower for the interlaced format, as it is necessary to use some vertical low-pass filtering to reduce temporal artifacts such as interline twitter.

Sometimes, this resolution is referred to simply as HD, as is evident from derived terms like qHD (quarter) and nHD (ninth), which have a half and a third of the lines and columns of their common base, respectively, whereas QHD (quadruple) has double the dimensions of instead.

When set in relation to higher resolutions, is also referred to as 2K because it has roughly 2000 pixels of horizontal resolution.[10] This naming convention usually – but not always – assumes a multiple of 960 pixels.

The next bigger resolution from in vertical direction is, which is hence called FHD+ by some producers,[11] but is elsewhere known as WUXGA, the wider variant of UXGA.

(DCI 2K)

See main article: 2K resolution.

DCI 2K is a standardized format established by the Digital Cinema Initiatives consortium in 2005 for 2K video projection. This format has a resolution of (2.2 megapixels) with an aspect ratio of (1.8) or roughly "".[12] This is the native resolution for DCI-compliant 2K digital projectors – active displays with this resolution are rare. The display aspect ratio is frequently wider than the native one, requiring non-square pixels.

(UWFHD)

The resolution is equivalent to Full HD extended in width by one third, with an aspect ratio of 64:27 (2., or 21.:9). Monitors at this resolution usually contain built-in firmware to divide the screen into two screens.[13]

There are other, non-standard display resolutions with 1080 lines whose aspect ratios fall between the usual and the ultra-wide, e.g.,, and . They are mostly used in smartphones or phablets and do not have established names, but may be subsumed under the umbrella term ultra-wide (full) HD.

(QHD)

Note: qHD is quarter HD; QHD is quad HD

See main article: 1440p.

QHD (Quad HD) or 1440p is a display resolution of pixels.[14] [15] The name "QHD" reflects the fact that it has four times as many pixels as HD (720p). It is also sometimes called "WQHD"[16] [17] to distinguish it from qHD, otherwise it is technically redundant since the HD resolutions are all widescreen which the added 'W' empasizes.

This resolution was under consideration by the ATSC in the late 1980s to become the standard HDTV format, because it is exactly 4 times the width and 3 times the height of VGA, which has the same number of lines as NTSC signals at the SDTV 4:3 aspect ratio. Pragmatic technical constraints made them choose the now well-known 16:9 formats of and instead, which were 2 times and 3 times the width of VGA respectively.

In October 2006, Chi Mei Optoelectronics (CMO) announced a 47-inch 1440p LCD panel to be released in Q2 2007;[18] the panel was planned to finally debut at FPD International 2008 in a form of autostereoscopic 3D display.[19] As of the end of 2013, monitors with this resolution were becoming more common.

The 27-inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of, as did its successor, the 27-inch Apple Thunderbolt Display.

The resolution is also used in portable devices. In September 2012, Samsung announced the Series 9 WQHD laptop with a 13-inch display.[20] In August 2013, LG announced a 5.5-inch QHD smartphone display, which was used in the LG G3.[21] In October 2013 Vivo announced a smartphone with a display.[22] Other phone manufacturers followed in 2014, such as Samsung with the Galaxy Note 4,[23] and Google[24] and Motorola[25] with the Nexus 6[26] smartphone. By the mid-2010s, it was a common resolution among flagship phones such as the HTC 10, the Lumia 950, and the Galaxy S6[27] and S7.[28]

DQHD

Ultrawide (curved) monitors with a 32:9 aspect ratio and a resolution have been referred to as Dual QHD or DQHD for short.

(QHD+)

The resolution has a 16:9 aspect ratio and is exactly four times as many pixels as the HD+ resolution, and is therefore referred to as "QHD+" (Quad HD+).[29] It has also been referred to as simply "QHD"[30] and some companies.

The first products announced to use this resolution were the 2013 HP Envy 14 TouchSmart Ultrabook and the 13.3-inch Samsung Ativ Q.[31] [32]

(UWQHD)

The resolution is equivalent to QHD extended in width by 34%, giving it an aspect ratio of 43:18 (2.3:1, or 21.5:9; commonly marketed as simply "21:9"). The first monitor to support this resolution was the 34-inch LG 34UM95-P.[33] This monitor was first released in Germany in late December 2013, before being officially announced at CES 2014.

The resolution is equivalent to two Full HD displays side by side or one vertical half of a 4K UHD display. It has an aspect ratio of 32:9 (3.:1), close to the 3.6:1 ratio of IMAX UltraWideScreen 3.6. Samsung monitors at this resolution contain built-in firmware to divide the screen into two screens, or one and one screen.[34]

The resolution has a 12:5 aspect ratio, i.e. 2.4 or 21.6:9, which is commonly marketed as simply "21:9". It is equivalent to WQXGA extended in width by 50%, or 4K UHD reduced in height by 26%. This resolution is commonly encountered in cinematic 4K content that has been cropped vertically to a widescreen aspect ratio. The first monitor to support this resolution was the 37.5-inch LG 38UC99-W. Other vendors followed, with Dell U3818DW, HP Z38c, and Acer XR382CQK.

This resolution has been referred to as UW4K, WQHD+, UWQHD+ or QHD+,[35] [36] [37] [38] though no single name is agreed upon.

(4K UHD)

See main article: 4K resolution.

The resolution, sometimes referred to as 4K UHD or 4K2K, has a 16:9 aspect ratio and 8,294,400 pixels. It is double the size of Full HD in both dimensions for a total of four times as many pixels, and triple the size of HD in both dimensions for a total of nine times as many pixels. It is the lowest common multiple of the HDTV resolutions.

was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036-1,[39] as well as the 4K UHDTV system defined in ITU-R BT.2020[40] [41] and the UHD-1 broadcast standard from DVB.[42] It is also the minimum resolution requirement for CEA's definition of an Ultra HD display.[43] Before the publication of these standards, it was sometimes casually referred to as "QFHD" (Quad Full HD).[44]

The first commercial displays capable of this resolution include an 82-inch LCD TV revealed by Samsung in early 2008,[45] the Sony SRM-L560, a 56-inch LCD reference monitor announced in October 2009,[46] an 84-inch display demonstrated by LG in mid-2010,[47] and a 27.84-inch 158PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010.[48] In October 2011 Toshiba announced the REGZA 55x3,[49] which is claimed to be the first 4K glasses-free 3D TV.

DisplayPort supports at 30Hz in version 1.1 and added support for up to 75Hz in version 1.2 (2009) and 120Hz in version 1.3 (2014),[50] while HDMI added support for at 30Hz in version 1.4 (2009)[51] and 60Hz in version 2.0 (2013).[52]

When support for 4K at 60Hz was added in DisplayPort 1.2, no DisplayPort timing controllers (TCONs) existed which were capable of processing the necessary amount of data from a single video stream. As a result, the first 4K monitors from 2013 and early 2014, such as the Sharp PN-K321, Asus PQ321Q, and Dell UP2414Q and UP3214Q, were addressed internally as two monitors side by side instead of a single display and made use of DisplayPort's Multi-Stream Transport (MST) feature to multiplex a separate signal for each half over the connection, splitting the data between two timing controllers.[53] [54] Newer timing controllers became available in 2014, and after mid-2014 new 4K monitors such as the Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60Hz,[55] instead, using the standard SST (Single-Stream Transport) approach.[56]

In 2015, Sony announced the Xperia Z5 Premium, the first smartphone with a 4K display,[57] and in 2017 Sony announced the Xperia XZ Premium, the first smartphone with a 4K HDR display.[58]

(DCI 4K)

, referred to as DCI 4K, Cinema 4K[59] or 4K2K, is the resolution used by the 4K container format defined by the Digital Cinema Initiatives Digital Cinema System Specification, a prominent standard in the cinema industry. This resolution has an aspect ratio of 256:135 (1.8:1), and 8,847,360 total pixels. This is the native resolution for DCI 4K digital projectors and displays.

HDMI added support for at 24Hz in version 1.4[51] and 60Hz in version 2.0.[52] [60]

The resolution is equivalent to 4K UHD extended in width by one third, giving it a 64:27 aspect ratio (2. or 21.:9, commonly marketed as simply "21:9") and 11,059,200 total pixels. It is exactly double the size of in both dimensions, for a total of four times as many pixels. The first displays to support this resolution were 105-inch televisions, the LG 105UC9 and the Samsung UN105S9W.[61] [62] In December 2017, LG announced a 34-inch monitor, the 34WK95U,[63] and in January 2021 the 40-inch 40WP95C.[64] LG refers to this resolution as "5K2K WUHD".[65]

(5K)

See main article: 5K resolution.

The resolution, commonly referred to as 5K or , has a 16:9 aspect ratio and 14,745,600 pixels. Although it is not established by any of the UHDTV standards, some manufacturers such as Dell have referred to it as "UHD+".[66] It is exactly double the pixel count of QHD in both dimensions for a total of four times as many pixels, and is one third larger than 4K UHD in both dimensions for a total of 1. times as many pixels. The line count of 2880 is also the least common multiple of 480 and 576, the scanline count of NTSC and PAL, respectively. Such a resolution can vertically scale SD content to fit by natural numbers (6 for NTSC and 5 for PAL). Horizontal scaling of SD is always fractional (non-anamorphic: 5.33...5.47, anamorphic: 7.11...7.29).

The first display with this resolution was the Dell UltraSharp UP2715K, announced on September 5, 2014.[67] On October 16, 2014, Apple announced the iMac with Retina 5K display.[68] [69]

DisplayPort version 1.3 added support for 5K at 60Hz over a single cable, whereas version 1.2 was only capable of 5K at 30Hz. Early 5K 60Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort1.3 support required two DisplayPort1.2 connections to operate at 60Hz, in a tiled display mode similar to early 4K displays using DP MST.[70]

(8K UHD)

See main article: 8K resolution.

The resolution, sometimes referred to as 8K UHD, has a 16:9 aspect ratio and 33,177,600 pixels. It is exactly double the size of 4K UHD in each dimension for a total of four times as many pixels, and Quadruple the size of Full HD in each dimension for a total of sixteen times as many pixels. was chosen as the resolution of the UHDTV2 format defined in SMPTE ST 2036-1, as well as the 8K UHDTV system defined in ITU-R BT.2020 and the UHD-2 broadcast standard from DVB.

DisplayPort1.3, finalized by VESA in late 2014, added support for at 30Hz (or 60Hz with 4:2:0 subsampling). VESA's Display Stream Compression (DSC), which was part of early DisplayPort1.3 drafts and would have enabled 8K at 60Hz without subsampling, was cut from the specification prior to publication of the final draft.[71]

DSC support was reintroduced with the publication of DisplayPort1.4 in March 2016. Using DSC, a "visually lossless" form of compression, formats up to (8K UHD) at 60Hz with HDR and 30bit/px color depth are possible without subsampling.[72]

Video Graphics Array (VGA and derivatives)

H
(px) !
V
(px)
H:V
H × V
(Mpx)
VESA
QQVGA160 120 4:3 0.019
HQVGA240 160 3:2 0.038
QVGA320 240 4:3 0.077
WQVGA400 240 5:3 0.096
HVGA480 320 3:2 0.154
VGA640 480 4:3 0.307
WVGA800 480 5:3 0.384
FWVGA854 480 ≈ 16:9 0.410
WSVGA1024 576 16:9 0.590
SVGA800 600 4:3 0.480
WSVGA1024 600 128:75 0.614
DVGA960 640 3:2 0.614
QuadVGA1280 960 4:3 1.229

(QQVGA)

Quarter-QVGA (QQVGA or qqVGA) denotes a resolution of (4:3 storage aspect ratio) or pixels, usually used in displays of handheld devices. The term Quarter-QVGA signifies a resolution of one fourth the number of pixels in a QVGA display (half the number of vertical and half the number of horizontal pixels) which itself has one fourth the number of pixels in a VGA display. There are also devices with QQVGA (5:4 storage aspect ratio).[73]

The abbreviation qqVGA may be used to distinguish quarter from quad, just like qVGA.[74]

HQVGA (or Half-QVGA) denotes a display screen resolution of or pixels, as seen on the Game Boy Advance.[75] This resolution is half of QVGA, which is itself a quarter of VGA, which is pixels.

(QVGA)

Quarter VGA (QVGA[1] [76] or qVGA) is a popular term for a computer display with display resolution. QVGA displays were most often used in mobile phones, personal digital assistants (PDA), and some handheld game consoles. Often the displays are in a "portrait" orientation (i.e., taller than they are wide, as opposed to "landscape") and are referred to as .[77]

The name comes from having a quarter of the maximum resolution of the original IBM Video Graphics Array display technology, which became a de facto industry standard in the late 1980s. QVGA is not a standard mode offered by the VGA BIOS, even though VGA and compatible chipsets support a QVGA-sized Mode X. The term refers only to the display's resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use.

QVGA resolution is also used in digital video recording equipment as a low-resolution mode requiring less data storage capacity than higher resolutions, typically in still digital cameras with video recording capability, and some mobile phones. Each frame is an image of pixels. QVGA video is typically recorded at 15 or 30 frames per second. QVGA mode describes the size of an image in pixels, commonly called the resolution; numerous video file formats support this resolution.

While QVGA is a lower resolution than VGA, at higher resolutions the "Q" prefix commonly means quad(ruple) or four times higher display resolution (e.g., QXGA is four times higher resolution than XGA). To distinguish quarter from quad, lowercase "q" is sometimes used for "quarter" and uppercase "Q" for "Quad", by analogy with SI prefixes like m/M and p/P, but this is not a consistent usage.[78]

Some examples of devices that use QVGA display resolution include the iPod Classic, Samsung i5500, LG Optimus L3-E400, Galaxy Fit, Y and Pocket, HTC Wildfire, Sony Ericsson Xperia X10 Mini and Mini pro and Nintendo 3DS' bottom screen.

(WQVGA)

WQVGA and similar display resolutions! Name !! H
(px) !! V
(px) !! H:V
!! H × V
(Mpx) !! VESA !! Sources
360 240 15:10 0.086
376 240 4.7:3 0.090
384 240 16:100.092
WQVGA400 240 15:9 0.096
426 240 ≈16:9 0.102
428 240 ≈16:9 0.103
432 240 18:10 0.104
480 270 16:9 0.130
WQVGA480 272 ≈16:9 0.131 [79]

Wide QVGA or WQVGA are some display resolutions having the same height in pixels as QVGA, but wider.[80]

Since QVGA is 320 pixels wide and 240 pixels high (aspect ratio of 4:3), the resolution of a WQVGA screen might be (3:2 aspect ratio), (16:10 aspect ratio), (5:3 – such as the Nintendo 3DS screen),, (≈16:9 ratio) or (18:10 aspect ratio). As with WVGA, exact ratios of n:9 are difficult because of the way VGA controllers internally deal with pixels. For instance, when using graphical combinatorial operations on pixels, VGA controllers will use 1 bit per pixel. Since bits cannot be accessed individually but by chunks of 16 or an even higher power of 2, this limits the horizontal resolution to a 16-pixel granularity, i.e., the horizontal resolution must be divisible by 16. In the case of the 16:9 ratio, with 240 pixels high, the horizontal resolution should be 240 / 9 × 16 = 426. (426), the closest multiple of 16 is 432.

WQVGA has also been used to describe displays that are not 240 pixels high, for example, Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high. This may be due to WQVGA having the nearest screen height.

WQVGA resolutions were commonly used in touchscreen mobile phones, such as,, and . For example, the Hyundai MB 490i, Sony Ericsson Aino and the Samsung Instinct have WQVGA screen resolutions – . Other devices such as the Apple iPod Nano also use a WQVGA screen, pixels.

(HVGA)

HVGA and similar display resolutions! Name !! H
(px) !! V
(px) !! H:V
!! H × V
(Mpx) !! VESA !! Sources
640 240 8:3 0.154
480 270 16:9 0.130
480 272 ≈16:9 0.131
HVGA480 320 3:2 0.154
480 360 4:3 0.173

HVGA (Half-size VGA) screens have pixels (3:2 aspect ratio), pixels (4:3 aspect ratio), (≈16:9 aspect ratio), or pixels (8:3 aspect ratio). The former is used by a variety of PDA devices, starting with the Sony CLIÉ PEG-NR70 in 2002,[81] and standalone PDAs by Palm. The latter was used by a variety of handheld PC devices. VGA resolution is .

Examples of devices that use HVGA include the Apple iPhone (1st generation through 3GS), iPod Touch (1st Generation through 3rd), BlackBerry Bold 9000, HTC Dream, Hero, Wildfire S, LG GW620 Eve, MyTouch 3G Slide, Nokia 6260 Slide, Palm Pre, Samsung M900 Moment, Sony Ericsson Xperia X8, mini, mini pro, active and live and the Sony PlayStation Portable.

Texas Instruments produces the DLP pico projector which supports HVGA resolution.[82]

HVGA was the only resolution supported in the first versions of Google Android, up to release 1.5.[83] Other higher and lower resolutions became available starting on release 1.6, like the popular WVGA resolution on the Motorola Droid or the QVGA resolution on the HTC Tattoo.

Three-dimensional computer graphics common on television throughout the 1980s were mostly rendered at this resolution, causing objects to have jagged edges on the top and bottom when edges were not anti-aliased.

(VGA)

See main article: Video Graphics Array.

Video Graphics Array (VGA)[1] [84] refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987.[85] Through its widespread adoption, VGA has also come to mean either an analog computer display standard, the 15-pin D-subminiature VGA connector, or the resolution itself. While the VGA resolution was superseded in the personal computer market in the 1990s and the SEGA Dreamcast in 1998,[86] it became a popular resolution on mobile devices in the 2000s.[87] VGA is still the universal fallback troubleshooting mode in the case of trouble with graphic device drivers in operating systems.

In the field of video, the resolution of 480i supports 640 samples per line (corresponding to 640x480) corresponding to Standard Definition (SD), in contrast to high-definition (HD) resolutions like and .

(WVGA)

WVGA and similar display resolutions! Name !! H
(px) !! V
(px) !! H:V
!! H × V
(Mpx) !! VESA !! Sources
nHD640 360 16:9 0.230
640 384 15:9 0.246
800 450 16:9 0.360
720 480 15:100.346
768 480 16:100.369
WVGA800 480 15:9 0.384
WVGA848 480 ≈16:9 0.407 [88]
WVGA852 480 ≈16:9 0.409 [89]
853 480 ≈16:9 0.409
FWVGA854 480 ≈16:9 0.410

Wide VGA or WVGA,[90] [91] [92] sometimes just WGA are some display resolutions with the same 480-pixel height as VGA but wider, such as (3:2 aspect ratio), [90] [91] [92] (5:3),,,[89], or (≈16:9).It was a common resolution among LCD projectors and later portable and hand-held internet-enabled devices (such as MID and Netbooks) as it is capable of rendering websites designed for an 800 wide window in full page-width. Examples of hand-held internet devices, without phone capability, with this resolution include: Spice stellar nhance mi-435, ASUS Eee PC 700 series, Dell XCD35, Nokia 770, N800, and N810.

See also: Mobile phones with WVGA display resolution.

(FWVGA)

FWVGA[93] [94] is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of pixels. is approximately the 16:9 aspect ratio of anamorphically "un-squeezed" NTSC DVD widescreen video and is considered a "safe" resolution that does not crop any of the image. It is called Full WVGA to distinguish it from other, narrower WVGA resolutions which require cropping 16:9 aspect ratio high-definition video (i.e. it is full width, albeit with a considerable reduction in size).

The 854 pixel width is rounded up from 853.:

.Since a pixel must be a whole number, rounding up to 854 ensures inclusion of the entire image. is the 16:9 equivalent for NTSC (480 lines) on a display with square pixels. Plasma and other digital TV sets with this resolution were marketed as enhanced-definition television (EDTV) at the time.

In 2010, mobile phones with FWVGA display resolution started to become more common. (See also: list of mobile phones with FWVGA display.) In addition, the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6.2-inch FWVGA display.

(SVGA)

See main article: Super VGA.

Super Video Graphics Array, abbreviated to Super VGA or SVGA,[1] [84] also known as Ultra Video Graphics Array early on,[95] abbreviated to Ultra VGA or UVGA, is a broad term that covers a wide range of computer display standards.[96]

Originally, it was an extension to the VGA standard first released by IBM in 1987. Unlike VGA – a purely IBM-defined standard – Super VGA was defined by the Video Electronics Standards Association (VESA), an open consortium set up to promote interoperability and define standards. When used as a resolution specification, in contrast to VGA or XGA for example, the term SVGA normally refers to a resolution of pixels.

The marginally higher resolution is the highest 4:3 resolution not greater than 219 pixels, with its horizontal dimension a multiple of 32 pixels. This enables it to fit within a framebuffer of 512KB (512 × 2 bytes), and the common multiple of 32 pixels constraint is related to alignment. For these reasons, this resolution was available on the Macintosh LC III and other systems.

, (WSVGA)

The wide version of SVGA is known as WSVGA (Wide Super VGA or Wide SVGA),[97] featured on Ultra-Mobile PCs, netbooks, and tablet computers. The resolution is either (aspect ratio 16:9) or (128:75) with screen sizes normally ranging from 7 to 10 inches. It has full XGA width of 1024 pixels. Although digital broadcast content in former PAL/SECAM regions has 576 active lines, several mobile TV sets with a DVB-T2 tuner use the 600-line variant with a diameter of 7, 9 or 10 inches (18 to 26 cm).

is the 16:9 equivalent for PAL (576 lines) on a display with square pixels, resulting in a pixel aspect ratio of or depending on the native resolution of PAL.

DVGA (DoubleVGA) screens have pixels (3:2 aspect ratio)[98] [99] . Both dimensions are double that of HVGA, hence the pixel count is quadrupled.

Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4, where the screen is called the "Retina Display".iPhone 5 introduced a wide, 16:9 variant at pixels, which also has no official acronym.

(QuadVGA)

QuadVGA[100] (also labelled as Quad VGA[101] or Quad-VGA[102]) is a non-standard term used to refer to a resolution of, since both sides are doubled from VGA. However, it is usually not as the abbreviation QVGA because this is strongly associated with the alternate meaning Quarter VGA (QVGA).

It is sometimes unofficially called SXGA− to avoid confusion with the SXGA standard . Elsewhere, this 4:3 resolution was supposedly also called UVGA (Ultra VGA), or SXVGA (Super eXtended VGA).

Extended Graphics Array (XGA and derivatives)

H:V
!! H × V
(Mpx) !! VESA !! Sources
XGA1024 768 4:3 0.786
WXGA1366 768 data-sort-value="16:9"≈16:9 1.049
(FWXGA)[103] [104]
WXGA1280 800 16:10 1.024 [105]
XGA+1152 864 4:3 0.995 [106] [107]
WXGA+1440 900 16:10 1.296 [108] [109]
(WXGA)
SXGA1280 1024 5:4 1.311
WSXGA1600 1024 25:16 1.638
SXGA+1400 1050 4:3 1.470
WSXGA+1680 1050 16:10 1.764
QWXGA2048 1152 16:9 2.359 [110]
UXGA1600 1200 4:3 1.920
WUXGA1920 1200 16:10 2.304
(FHD+)
QXGA2048 1536 4:3 3.146
WQXGA2560 1600 16:10 4.096
WQXGA+2880 1800 16:10 5.184 [111]
QSXGA2560 2048 5:4 5.243
WQSXGA3200 2048 25:16 6.554
QSXGA+2800 2100 4:3 5.880
QUXGA3200 2400 4:3 7.680
WQUXGA3840 2400 16:10 9.216 [112] [113]
(UHD+)

(XGA)

See main article: Extended Graphics Array.

The Extended Graphics Array (XGA) or originally Extended Video Graphics Array (Extended-VGA, EVGA)[114] is an IBM display standard introduced in 1990. Later it became the most common appellation of the [1] [105] [84] pixels display resolution.

The initial version of XGA expanded upon IBM's older VGA by adding support for four new screen modes, including one new resolution:[115] [116]

  • pixels in direct 16 bits-per-pixel (65,536 color) RGB hi-color and 8bit/px (256 color) palette-indexed mode.
  • pixels with a 16- or 256-color (4 or 8bit/px) palette, using a low frequency interlaced refresh rate.

XGA-2 added a 24-bit DAC, but this was used only to extend the available master palette in 256-color mode, e.g. to allow true 256-greyscale output. Other improvements included the provision of the previously missing resolution in up to 65,536 colors, faster screen refresh rates in all modes (including non-interlace, flicker-free output for), and improved accelerator performance and versatility.

All standard XGA modes have a aspect ratio with square pixels, although this does not hold for certain standard VGA and third-party extended modes .

WXGA

H:V
!! H × V
(Mpx) !! VESA !! Source
1280 720 16:9 0.922
1152 768 15:10 0.885
WXGA1280 768 15:9 0.983 [117] [118]
FWXGA1360 768 data-sort-value="16:9"≈16:9 1.044 [119]
WXGA
(FWXGA)
1366 768 data-sort-value="16:9"≈16:9 1.049 [120]
WXGA1280 800 16:10 1.024

Wide XGA (WXGA) is a set of non-standard resolutions derived from XGA by widening it to [120] [107] with a widescreen aspect ratio of nearly 16:9 or to [105] with an aspect ratio of 16:10. WXGA is commonly used for low-end LCD TVs and LCD computer monitors for widescreen presentation. The exact resolution offered by a device described as "WXGA" can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases.

Widespread availability of and pixel resolution LCDs for laptop monitors can be considered an OS-driven evolution from the formerly popular screen size, which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for "traditional" screens. In Microsoft Windows operating system specifically, the larger taskbar of Windows 7 occupies an additional 16-pixel lines by default, which may compromise the usability of programs that already demanded a full (instead of, e.g.) unless it is specifically set to use small icons; an "oddball" 784-line resolution would compensate for this, but has a simpler aspect and also gives the slight bonus of 16 more usable lines. Also, the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational "widgets" without compromising the display width of other programs, and Windows 8 is specifically designed around a "two-pane" concept where the full 16:9 or 16:10 screen is not required. Typically, this consists of a 4:3 main program area (typically, or) plus a narrow sidebar running a second program, showing a toolbox for the main program or a pop-out OS shortcut panel taking up the remainder.

(WXGA)

When referring to televisions and other monitors intended for consumer entertainment use, WXGA is often understood to refer to a resolution of,[120] with an aspect ratio of very nearly 16:9. The basis for this otherwise odd seeming resolution is similar to that of other "wide" standards – the line scan (refresh) rate of the well-established "XGA" standard (pixels, 4:3 aspect ratio) extended to give square pixels on the increasingly popular 16:9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock, or manufacturing changes other than extending panel width by one third. As 768 is not divisible by 9, the aspect ratio is not quite 16:9 – this would require a width of 1365 (1365.) pixels. However, at only 0.05%, the resulting error is insignificant. It is also occasionally referred to as FWXGA (Full Wide XGA), so it can be distinguished from other, narrower WXGA resolutions.[103] [104]

Following the introduction of the European HD ready logo in 2005, a year later was the most popular resolution for liquid crystal display televisions (versus XGA for Plasma TVs flat panel displays);[121] By 2013, even this was relegated to only being used in smaller or cheaper displays (e.g. "bedroom" LCD TVs, or low-cost, large-format plasmas), cheaper laptop and mobile tablet computers, and midrange home cinema projectors, having otherwise been overtaken by higher "full HD" resolutions such as .[107]

A common variant on this resolution is also (unnamed[119] [1] or named FWXGA[118]), which confers several technical benefits, most significantly a reduction in memory requirements from just over to just under 1MB per 8-bit channel (needs 1024.5KB per channel; needs 1020KB; 1MB is equal to 1024KB), which simplifies architecture and can significantly reduce the amount–and speed–of VRAM required with only a very minor change in available resolution, as memory chips are usually only available in fixed megabyte capacities. For example, at 32-bit color, a framebuffer would require only 4MB, whilst a one may need 5, 6, or even 8MB depending on the exact display circuitry architecture and available chip capacities. The 6-pixel reduction also means each line's width is divisible by 8 pixels, simplifying numerous routines used in both computer and broadcast/theatrical video processing, which operate on 8-pixel blocks. Historically, many video cards also mandated screen widths divisible by 8 for their lower-color, planar modes to accelerate memory accesses and simplify pixel position calculations (e.g. fetching 4-bit pixels from 32-bit memory is much faster when performed 8 pixels at a time, and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word), and this convention persisted in low-end hardware even into the early days of widescreen, LCD HDTVs; thus, most 1366-width displays also quietly support display of 1360-width material, with a thin border of unused pixel columns at each side. This narrower mode is even further removed from the 16:9 ideal, but the error is still less than 0.5% (technically, the mode is either 15.94:9.00 or 16.00:9.04) and should be imperceptible.

(WXGA)

When referring to laptop displays or independent displays and projectors intended primarily for use with computers, WXGA is also used to describe a resolution of pixels, with an aspect ratio of .[122] [123] [105] This was once particularly popular for laptop screens, usually with a diagonal screen size of between 12 and 15 inches, as it provided a useful compromise between 4:3 XGA and 16:9 WXGA, with improved resolution in both dimensions vs. the old standard (especially useful in portrait mode, or for displaying two standard pages of text side by side), a perceptibly "wider" appearance and the ability to display 720p HD video "native" with only very thin letterbox borders (usable for on-screen playback controls) and no stretching. Additionally, it required only 1000KB (just under 1MB) of memory per 8-bit channel; thus, a typical double-buffered 32-bit color screen could fit within 8MB, limiting everyday demands on the complexity (and cost, energy use) of integrated graphics chipsets and their shared use of typically sparse system memory (generally allocated to the video system in relatively large blocks), at least when only the internal display was in use (external monitors generally being supported in "extended desktop" mode to at least resolution). 16:10 (or 8:5) is itself a rather "classic" computer aspect ratio, harking back to early modes (and their derivatives) as seen in the Commodore 64, IBM CGA card and others. However, as of mid-2013, this standard is becoming increasingly rare, crowded out by the more standardized and thus more economical-to-produce panels, as its previously beneficial features become less important with improvements to hardware, gradual loss of general backwards software compatibility, and changes in interface layout. As of February 2024, the market availability of panels with native resolution had been generally relegated to handheld gaming computers is used by Valve's Steam Deck,[124] as well as several other handheld gaming computers.

Other WXGA

Additionally, at least three other resolutions are sometimes labelled as WXGA:

  • The first variant, ,[117] [1] [118] can be seen as a compromise resolution that addressed this problem, as well as a halfway point between the older and resolutions, and a stepping stone to (being one-quarter wider than 1024, not one-third) and, that never quite caught on in the same way as either of its arguably derivative successors. Its square-pixel aspect ratio is 15:9 (or 5:3), in contrast to HDTV's 16:9 and 's 16:10. It is also the lowest resolution that might be found in an "Ultrabook" standard laptop, as it satisfies the minimum horizontal and vertical pixel resolutions required to officially qualify for the designation.
  • Second, the HDTV-standard [125] (otherwise commonly described as "720p"), which offers an exact 16:9 aspect ratio with square pixels; naturally, it displays standard 720p HD video material without stretching or letterboxing and 1080i/1080p with a simple 2:3 downscale. This resolution has found some use in tablets and modern, high-pixel-density mobile phones, as well as small-format "netbook" or "ultralight" laptop computers. However, its use is uncommon in larger, mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines. For certain uses such as word processing, it can even be considered a slight downgrade (reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width, especially with the addition of subpixel anti-aliasing).
  • Another mentionable resolution is with a 3:2 aspect ratio.
  • Likewise, with a 7:4 aspect ratio (similar to 16:9) is used sometimes.
  • Some resolution displays have also been found labeled as WXGA;[105] however, the "correct" label is WXGA+.

(XGA+)

H:V
!! H × V
(Mpx) !! VESA !! Usage
1120 832 data-sort-value="1.35"35:26 (≈1.35) 0.932 NeXT
XGA+1152 864 data-sort-value="1.33"4:3 (≈1.33) 0.995
1152 870 data-sort-value="1.32"192:145 (≈1.32) 1.002 Apple
1152 900 data-sort-value="1.28"32:25 (1.28) 1.037 Sun

XGA+ stands for Extended Graphics Array Plus and is a computer display standard, usually understood to refer to the resolution with an aspect ratio of 4:3. Until the advent of widescreen LCDs, XGA+ was often used on 17-inch desktop CRT monitors.[107] [106] It is the highest 4:3 resolution not greater than 2 pixels (≈1.05 megapixels), with its horizontal dimension a multiple of 32 pixels. This enables it to fit closely into a video memory or framebuffer of 1MB (1 × 2 bytes), assuming the use of one byte per pixel. The common multiple of 32 pixels constraint is related to alignment.

Historically, the resolution also relates to the earlier standard of pixels, which was adopted by Sun Microsystems for the Sun-2 workstation in the early 1980s. A decade later, Apple Computer selected the resolution of for their 21-inch CRT monitors, intended for use as two-page displays on the Macintosh II computer. These resolutions are even closer to the limit of a 1MB framebuffer, but their aspect ratios differ slightly from the common 4:3.[107]

XGA+ is the next step after XGA, although it is not approved by any standard organizations. The next step with an aspect ratio of 4:3 is (QuadVGA) or (SXGA+).

(WXGA+, WSXGA)

WXGA+[17] [84] [108] [109] [126] and WSXGA[17] [84] are terms referring to a computer display resolution of . Occasionally manufacturers use other terms to refer to this resolution.[127] The Standard Panels Working Group refers to the resolution as WXGA (but refers also WXGA to).[105]

WXGA+ can be considered enhanced versions of WXGA with more pixels. The aspect ratio is 16:10 (widescreen). WXGA+ resolution is common in 19-inch widescreen desktop monitors (a very small number of such monitors use WSXGA+), and is also optional, although less common, in laptop LCDs, in sizes ranging from 12.1 to 17 inches.

The name WSXGA is also used to describe a resolution of,[118] which has an aspect ratio of 25:16 (52:42 = 1.5625, which is between 14:9 and 16:10).[128]

WXGA+ has also been used to refer to a resolution of,[126] which has an aspect ratio very close to 3:2 (1.5).

(SXGA)

Super XGA (SXGA)[84] is a standard monitor resolution of pixels.[1] [126] This display resolution is the "next step" above the XGA resolution that IBM developed in 1990.

The resolution is not the standard 4:3 aspect ratio, instead it is a 5:4 aspect ratio (1.25:1 instead of 1.:1). A standard 4:3 monitor using this resolution will have rectangular rather than square pixels, meaning that unless the software compensates for this the picture will be distorted, causing circles to appear elliptical.

SXGA is the most common native resolution of 17-inch and 19-inch LCD monitors. An LCD monitor with SXGA native resolution will typically have a physical 5:4 aspect ratio, preserving a 1:1 pixel aspect ratio.

Sony manufactured a 17-inch CRT monitor with a 5:4 aspect ratio designed for this resolution. It was sold under the Apple brand name.

SXGA is also a popular resolution for cell phone cameras, such as the Motorola Razr and most Samsung and LG phones. Although having been taken over by newer UXGA (2.0-megapixel) cameras, the 1.3-megapixel was the most common around 2007.

Any CRT that can run can also run (QuadVGA or sometimes SXGA-), which has the standard 4:3 ratio. A flat panel TFT screen, including one designed for, will show stretching distortion when set to display any resolution other than its native one, as the image needs to be interpolated to fit in the fixed grid display. Some TFT displays do not allow a user to disable this, and will prevent the upper and lower portions of the screen from being used forcing a "letterbox" format when set to a 4:3 ratio.

The resolution became popular because at 24bit/px color depth it fits well into 4 megabytes of video RAM. At the time, memory was extremely expensive. Using at 24-bit color depth allowed using 3.75MB of video RAM, fitting nicely with VRAM chip sizes which were available at the time (4MB):

px × 24bit/px ÷ 8bit/byte ÷ 220byte/MB = 3.75MB

(SXGA+)

SXGA+[126] [105] [84] stands for Super Extended Graphics Array Plus and is a computer display standard. An SXGA+ display is commonly used on 14-inch or 15-inch laptop LCD screens with a resolution of pixels. An SXGA+ display is used on a few 12-inch laptop screens such as the ThinkPad X60 and X61 (both only as tablet) as well as the Toshiba Portégé M200 and M400, but those are far less common. At 14.1 inches, Dell offered SXGA+ on many of the Latitude C-Series laptops, such as the C640, and IBM since the ThinkPad T21. Sony also used SXGA+ in their Z1 series, but no longer produces them as widescreen has become more predominant.

In desktop LCDs, SXGA+ is used on some low-end 20-inch monitors, whereas most of the 20-inch LCDs use UXGA (standard screen ratio), or WSXGA+ (widescreen ratio).

A rare resolution of, i.e. with double the pixels horizontally and vertically, is known as QSXGA+.[84]

(WSXGA+)

WSXGA+[126] [105] [84] [93] stands for Widescreen Super Extended Graphics Array Plus. WSXGA+ displays were commonly used on Widescreen 20-, 21-, and 22-inch LCD monitors from numerous manufacturers (and a very small number of 19-inch widescreen monitors), as well as widescreen 15.4-inch and 17-inch laptop LCD screens like the Thinkpad T61p, the late 17" Apple PowerBook G4 and the unibody Apple 15" MacBook Pro. The resolution is pixels (1,764,000 pixels) with a 16:10 aspect ratio.

WSXGA+ is the widescreen version of SXGA+. The next highest resolution (for widescreen) after it is WUXGA, which is pixels.

(UXGA)

UXGA[105] [84] [1] [126] (sometimes UGA) is an abbreviation for Ultra Extended Graphics Array referring to a standard monitor resolution of pixels (totaling 1,920,000 pixels), which is exactly four times the default image resolution of SVGA (totaling 480,000 pixels). Dell Inc. refers to the same resolution of 1,920,000 pixels as UGA. It is generally considered to be the next step above SXGA (or), but some resolutions (such as the unnamed and SXGA+ at) fit between the two.

UXGA has been the native resolution of many fullscreen monitors of 15 inches or more, including laptop LCDs such as the ones in the IBM ThinkPad A21p, A30p, A31p, T42p, T43p, T60p, Dell Inspiron 8000/8100/8200 and Latitude/Precision equivalents; some Panasonic Toughbook CF-51 models; and the original Alienware Area 51M gaming laptop. However, in more recent times, UXGA is not used in laptops at all but rather in desktop monitors that have been made in sizes of 20 inches and 21.3 inches. Some 14-inch laptop LCDs with UXGA have also existed (such as the Dell Inspiron 4100), but these are very rare.

There are two different widescreen cousins of UXGA, one called UWXGA with (750) and one called WUXGA with resolution.

(WUXGA)

WUXGA[105] [84] [126] stands for Widescreen Ultra Extended Graphics Array and is a display resolution of pixels (2,304,000 pixels) with a 16:10 screen aspect ratio. It is a wide version of UXGA. By some producers it is called FHD+ because it is the next bigger resolution in vertical direction after FHD .[11] WUXGA/FHD+ can be used for viewing high-definition television (HDTV) content, which uses a 16:9 aspect ratio and a (720p) or (1080i or 1080p) resolution.

The 16:10 aspect ratio (as opposed to the 16:9 used in widescreen televisions) was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side.[129]

WUXGA resolution has a total of 2,304,000 pixels. One frame of uncompressed 8BPC RGB WUXGA is 6.75MiB (6.912MB). Initially, it was available in widescreen CRTs such as the Sony GDM-FW900 and the Hewlett-Packard A7217A (introduced in 2003), and in 17-inch laptops. Most QXGA displays support . WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem.

The next lower standard resolution (for widescreen) before it is WSXGA+, which is pixels (1,764,000 pixels, or 30.61% fewer than WUXGA); the next higher resolution widescreen is an unnamed resolution (supported by the above GDM-FW900 and A7217A) and then the more common WQXGA, which has pixels (4,096,000 pixels, or 77.78% more than WUXGA).

(QWXGA)

QWXGA[110] (for Quad-WXGA or Quad Wide Extended Graphics Array) is a display resolution of pixels with a aspect ratio.

If taken as a starting point that WXGA has a display resolution of [121] or [105] a display with a size 4-times of WXGA should have or pixels, but the first is non-existent and the latter is named WQXGA. Conversely, the quarter of QWXGA would have pixels but this is named WSVGA.

A few QWXGA LCD monitors were available in 2009 with 23- and 27-inch displays, such as the Acer B233HU (23-inch) and B273HU (27-inch), the Dell SP2309W, and the Samsung 2343BWX. As of 2011, most monitors have been discontinued, and as of 2013, no major manufacturer produces monitors with this resolution.

(QXGA)

QXGA (for Quad-XGA or Quad Extended Graphics Array) is a display resolution of pixels with a aspect ratio as XGA.[1] [126] The name comes from it having four times as many pixels as an XGA display of .

Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens, but in CRT monitors this resolution is much more common; some examples include the Sony F520, ViewSonic G225fB, NEC FP2141SB or Mitsubishi DP2070SB, Iiyama Vision Master Pro 514, and Dell and HP P1230. Of these monitors, none are still in production.

A related display size is WQXGA, which is a widescreen version.

IDTech manufactured a 15-inch QXGA IPS panel, used in the IBM ThinkPad R50p. NEC sold laptops with QXGA screens in 2002–05 for the Japanese market.[130] [131] The iPad (from 3rd through 6th generation and Mini 2) also have a QXGA display.

(WQXGA)

WQXGA (Wide Quad Extended Graphics Array) is a display resolution of pixels with a 16:10 aspect ratio.[132] The name implies a "wide QXGA" (QXGA) but it's not. Instead, WQXGA has exactly four times as many pixels as a WXGA hence the name "Quad-WXGA" would fit but QWXGA is defined as pixels.

By some producers it is called QHD+[133] [134] [135] referring to QHD . (QHD+ is sometimes also used for the resolution (QHD+).)

To obtain a vertical refresh rate higher than 40Hz with DVI, this resolution requires dual-link DVI cables and devices. To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in. Many video cards support this resolution. One feature that was unique to the 30-inch WQXGA monitors is the ability to function as the centerpiece and main display of a three-monitor array of complementary aspect ratios, with two UXGA 20-inch monitors turned vertically on either side. The resolutions are equal, and the size of the 1600 resolution edges is within a tenth of an inch (16-inch vs. 15.89999"), presenting a "picture window view" without the extreme lateral dimensions, small central panel, asymmetry, resolution differences, or dimensional difference of other three-monitor combinations. The resulting composite image has a 3.1:1 aspect ratio. This also means one UXGA 20-inch monitor in portrait orientation can also be flanked by two 30-inch WQXGA monitors for a composite image with an 11.85:3 (79:20, 3.95:1) aspect ratio. Some WQXGA medical displays (such as the Barco Coronis 4MP or the Eizo SX3031W) can also be configured as two virtual or seamless displays by using both DVI ports at the same time.

An early consumer WQXGA monitor was the 30-inch Apple Cinema Display, unveiled by Apple in June 2004. At the time, dual-link DVI was uncommon on consumer hardware, so Apple partnered with Nvidia to develop a special graphics card that had two dual-link DVI ports, allowing simultaneous use of two 30-inch Apple Cinema Displays. The nature of this graphics card, being an add-in AGP card, meant that the monitors could only be used in a desktop computer, like the Power Mac G5, that could have the add-in card installed, and could not be immediately used with laptop computers that lacked this expansion capability.

In March 2009, Apple updated several Macintosh computers with a Mini DisplayPort adapter, such as the Mac mini and iMac. These allow an external connection to 2560x1600 display.[136] [137]

In 2010, WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market. Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution, alleviating the need for an anamorphic lens to achieve 1:2.35 image projection. Many manufacturers have 27–30-inch models that are capable of WQXGA, albeit at a much higher price than lower resolution monitors of the same size. Several mainstream WQXGA monitors are or were available with 30-inch displays, such as the Dell 3007WFP-HC, 3008WFP, U3011, U3014, UP3017, the Hewlett-Packard LP3065, the Gateway XHD3000, LG W3000H, and the Samsung 305T. Specialist manufacturers like NEC, Eizo, Planar Systems, Barco (LC-3001), and possibly others offer similar models. As of 2016, LG Display make a 10-bit 30-inch AH-IPS panel, with wide color gamut, used in monitors from Dell, NEC, HP, Lenovo and Iiyama.

Released in November 2012, Google's Nexus 10 is the first consumer tablet to feature WQXGA resolution. Before its release, the highest resolution available on a tablet was QXGA, available on the Apple iPad 3rd and 4th generations devices. Several Samsung Galaxy tablets, including the Note 10.1 (2014 Edition), Tab S 8.4, 10.5 and TabPRO 8.4, 10.1 and Note Pro 12.2, as well as the Gigaset QV1030, also feature a WQXGA resolution display.

In 2012, Apple released the 13 inch MacBook Pro with Retina Display that features a WQXGA display, and the new MacBook Air in 2018.

The LG Gram 17 introduced in 2019[138] uses a 17-inch WQXGA display.

(QSXGA)

QSXGA[84] (Quad Super Extended Graphics Array) is a display resolution of pixels with a 5:4 aspect ratio. Grayscale monitors with a resolution, primarily for medical use, are available from Planar Systems (Dome E5), Eizo (Radiforce G51), Barco (Nio 5, MP), WIDE (IF2105MP), IDTech (IAQS80F), and possibly others.

Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of . These are driven by two dual-link DVI or DisplayPort outputs. They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual-link DVI or DisplayPort since one dual-link DVI or DisplayPort cannot single-handedly display 10 megapixels. A similar resolution of (4:3) was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card.

(WQXGA+)

Doubling the width and height of WXGA+ for a higher pixel denisty yields WQXGA+.[111]

(WQSXGA)

WQSXGA (Wide Quad Super Extended Graphics Array) describes a display standard that can support a resolution up to pixels, assuming a 25:16 (1.5625:1) aspect ratio. The Coronis Fusion 6MP DL by Barco supports a slightly wider (approximately 16:10).

(QUXGA)

QUXGA[84] [126] (Quad Ultra Extended Graphics Array) describes a display standard that can support a resolution up to pixels, assuming a 4:3 aspect ratio.

(WQUXGA)

WQUXGA[113] [112] [126] (Wide Quad Ultra Extended Graphics Array) describes a display standard that supports a resolution of pixels, which provides a 16:10 aspect ratio. This resolution is exactly four times pixels (WUXGA).

Some manufacturers refer to this resolution as UHD+[11] [112] [139] [140] because it has some additional lines compared to UHD .

Most display cards with a DVI connector are capable of supporting the resolution. However, the maximum refresh rate will be limited by the number of DVI links connected to the monitor. 1, 2, or 4 DVI connectors are used to drive the monitor using various tile configurations. Only the IBM T221-DG5 and IDTech MD22292B5 support the use of dual-link DVI ports through an external converter box. Many systems using these monitors use at least two DVI connectors to send video to the monitor. These DVI connectors can be from the same graphics card, different graphics cards, or even different computers. Motion across the tile boundary(ies) can show tearing if the DVI links are not synchronized. The display panel can be updated at a speed between 0Hz and 41Hz (48Hz for the IBM T221-DG5, -DGP, and IDTech MD22292B5). The refresh rate of the video signal can be higher than 41Hz (or 48Hz) but the monitor will not update the display any faster even if graphics card(s) do so.

In June 2001, WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech. LCD displays that support WQUXGA resolution include: IBM T220, IBM T221, Iiyama AQU5611DTBK, ViewSonic VP2290,[141] ADTX MD22292B, and IDTech MD22292 (models B0, B1, B2, B5, C0, C2). IDTech was the original equipment manufacturer which sold these monitors to ADTX, IBM, Iiyama, and ViewSonic.[142] However, none of the WQUXGA monitors (IBM, ViewSonic, Iiyama, ADTX) are in production anymore: they had prices that were well above even the higher end displays used by graphic professionals, and the lower refresh rates, 41Hz and 48Hz, made them less attractive for many applications.

Unsystematic resolutions

(Ultra) wide smartphone display resolutions! H
(px) !! V
(px) !! H:V
!! H × V
(Mpx) !! Usage
--960 640 iPhone 4(s) => DVGA 3:2-->1136 640 0.727 Apple
1334 750 1.000 Apple
1792 828 1.484 Apple
2160 1080 2.333 Android
2220 1080 2.400 Android
2280 1080 2.462 Android
2340 1080 2.527 Android, Apple
2400 1080 2.592 Android
2408 1080 2.600 Android
2412 1080 2.605 Android
2436 1125 2.741 Apple
2532 1170 2.962 Apple
2556 1179 3.014 Apple
2688 1242 3.338 Apple
2778 1284 3.567 Apple
2796 1290 3.607 Apple
2960 1440 4.262 Android
3040 1440 4.378 Android
3120 1440 4.493 Android

Some hardware devices, smartphones in particular, use non-standard resolutions for their displays. Still, their aspect ratio or one of the dimensions is often derived from one of the standards. Many of them have bend edges, rounded corners, notches or islands for sensors, which may make some pixels invisible or unused.

After having used VGA-based resolutions HVGA and "Retina" DVGA for several years in their iPhone and iPod products with a screen diagonal of 9cm or 3.5 inches, Apple started using more exotic variants when they adopted the aspect ratio to provide a consistent pixel density across screen sizes: first with the iPhone 5(c/s) and SE 1st for 10cm or 4 inch screens, and later the 1-megapixel resolution of with the iPhone 6(s)/7/8 and SE 2nd/3rd for 12cm or 4.7 inch screens, while devices with 14cm or 5.5 inch screens used standard with the iPhone 6(s)/7/8 Plus.

Keeping the pixel density of previous models, the iPhone X(s) and 11 Pro introduced a resolution for 15cm or 5.8 inch screens, while the iPhone XS Max and 11 Pro Max introduced a resolution for 17cm or 6.5 inch screens (with a notch) all at an aspect ratio of roughly or, for marketing, .Subsequent Apple smartphones and phablets stayed with that aspect ratio but increased screen size slightly with approximately constant pixel density. The resulting resolutions have longer sides divisible by 6 and hardly rounded shorter sides: (iPhone 11, Xr), (12/13 (Pro), 14), (14(Pro), 15 Pro), (12/13 Pro Max, 14 Plus), (14/15 Pro Max, 15 Plus).The only Apple smartphone models that shared an ultra-wide resolution with Android phones were the iPhone 12/13 Mini with .

Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios, such as Samsung's various "Infinity" displays with = aspect ratios (Galaxy S8/S9 and A8/A9) at resolutions of and .

is a resolution used by many smartphones since 2018. It has an aspect ratio of 18:9, matching that of the Univisium film format.[143]

Other phones feature an aspect ratio with resolutions like (e.g. S10) and (S10e).

Even wider resolutions with the same aspect ratio of as iPhones are (e.g. S24+) or (Poco M3).

Some phones have an aspect ratio of ca. at resolutions like (e.g. S10 Lite), (A14) or (Realme 9 Pro 5G).

Phones with foldable displays, e.g. Samsung Galaxy Z series, usually have non-systematic resolutions and aspect ratios, which are either roughly square when folded along the longer edge (Fold) or extremely tall when folded along the smaller edge (Flip).

Some air traffic control monitors use displays with a resolution of, with an aspect ratio of 1:1,[144] and similar consumer monitors at resolution of are also available aimed primarily at productivity tasks.[145]

See also

References

Notes and References

  1. Web site: VESA Coordinated Video Timings (CVT) Standard – Version 1.2 . . PDF . February 8, 2013 . . May 28, 2023 . 17–19.
  2. Web site: VESA Coordinated Video Timings (CVT) Standard – Version 1.2 . . PDF . February 8, 2013 . . May 28, 2023 . 10–11 . VESA CVT 1.2 recommends only 4:3, 16:10 (8:5), and 16:9 aspect ratios for newly introduced display resolutions. Exceptions will be made only in the case of a long-established industry standard (e.g., the 1280 x 1024 format, which is a 5:4 aspect ratio), or in the case of a clear need..
  3. Web site: Display resolution . Encyclopædia Britannica . 2023-04-27.
  4. Web site: What Is Display Resolution? . Lifewire . 2023-04-27.
  5. Web site: How to calculate the optimum monitor size at any resolution . PC Gamer . 2023-04-27.
  6. Web site: Screen Resolutions and Why They Matter . How-To Geek . 2023-04-27.
  7. News: 18:9 Aspect Ratio in Smartphones will be the new Standard in 2018, Here's why . Ahmed . Asif . 13 November 2017 . Techtippr . 2018-10-01.
  8. Web site: Video resolution & aspect ratios. Google Inc.. YouTube Help. 2024-05-04.
  9. https://www.pcmag.com/encyclopedia/term/nhd PC Mag
  10. Web site: What is 2K resolution? Lenovo Israel . 2023-11-04 . www.lenovo.com . en.
  11. Web site: Dell XPS 15 9520 - Setup and Specifications . Manual . 17 . FHD+ (1920 x 1200) or UHD+ (3840 x 2400) or 3.5K (3456 x 2160) . dell.com. May 19, 2023.
  12. Web site: Digital Cinema System Specification . 10 October 2012 . . 2016-03-02 . https://web.archive.org/web/20160527180135/http://dcimovies.com/specification/DCI_DCSS_v12_with_errata_2012-1010.pdf . 2016-05-27 . dead.
  13. Web site: The best screen for multitasking comes with a hefty price tag . Tweedle . Steven . 3 December 2016 . Business Insider Singapore . 2018-10-01 .
  14. https://www.dell.com/en-ie/shop/monitors-flat-panel-widescreen/ar/7818/2560-x-1440-qhd?appliedRefinements=2583 2560 x 1440 (QHD) - Flat Screen & Widescreen Monitors
  15. Web site: What Is 1440p? (with picture) . Brendan . McGuigan . wisegeek.com . 2013 . 2013-12-10.
  16. Web site: ASUS PB278Q Professional 27" 16:9 2560 x 1440 WQHD LED-backlit Monitor . www.asus.com . 2023-05-23.
  17. Web site: What Are the Different Portable LCD and Flat Panel Monitor Screen Resolutions? − LCD and Flat-Panel Monitor Types With Associated Native Resolutions . List of the most common display standards from WXGA up to 8K UHD . Dell Knowledge Base Article . . 2023-05-19.
  18. Web site: CMO to ship 47-inch Quad HD – 1440p – LCD in 2007 . Lawler . Richard . Engadget . 17 October 2006 . 2008-07-06.
  19. Web site: CMO showcases latest "green" and "innovative" LCD panels . Chi Mei Optoelectronics . 24 October 2008 . 2008-10-26 . dead . https://web.archive.org/web/20100313055721/http://www.cmo.com.tw/opencms/cmo/modules/news/MCNews/mcnews_0111.html?__locale=en . 2010-03-13.
  20. Web site: Samsung Series 9 WQHD: Hands-on with Sammy's Retina retort . Davies . Chris . SlashGear . 1 September 2012 . 2013-06-02.
  21. Web site: LG Display claims a world's first with 2,560 × 1,440 LCD for smartphones . Santos . Alexis . Engadget . AOL . 20 August 2013 . 2013-08-21.
  22. Web site: Vivo Xplay 3S to be the world's first phone with a 2,560 x 1,440 display . Lai . Richard . Engadget . AOL . 16 October 2013 . 2013-10-19.
  23. Web site: Samsung Galaxy Note 4 . GSMArena . 2018-10-01.
  24. Web site: Android: Be together. Not the same. . 15 October 2014 . Google Official Blog . 2015-02-14.
  25. Web site: Nexus 6 from Google and Motorola: More Android. More screen. More everything. . 15 October 2014 . The Official Motorola Blog . Motorola . 2015-02-14.
  26. Web site: Nexus 6 . 2015-02-14 . https://web.archive.org/web/20150216014552/http://www.google.com/nexus/6/ . 2015-02-16 . live .
  27. Web site: Samsung S6 Edge with curved screen unveiled at MWC . Kelion . Leo . 1 March 2015 . BBC News . 2015-03-01.
  28. Web site: Samsung Galaxy S7 - Full phone specifications . GSMArena . 2018-10-01.
  29. Web site: Dell XPS 15 now features a QHD+ resolution display . Nistor . Codrut . Notebookcheck . 21 October 2013 . 2013-11-15.
  30. Web site: Samsung beats Chromebook Pixel and Retina MacBook with new high-res laptop display . Brian . Matt . The Verge . 20 May 2013 . 2013-05-23.
  31. Web site: HP redesigns Envy and Pavilion laptops for 2013, including one with a 3200 x 1800 screen . Hollister . Sean . The Verge . 23 May 2013 . 2013-05-23.
  32. Web site: Samsung to exhibit 13.3-inch notebook display with 3,200 x 1,800 resolution . Sakr . Sharif . Engadget . 20 May 2013 . 2013-05-23.
  33. Web site: LG UltraWide QHD IPS Monitor 34UM95 . LG Electronics UK . 2016-09-07.
  34. Web site: Samsung C49HG90 49-in Ultrawide FreeSync 2 Monitor Review: How Wide is too Wide? . Addison . Ken . 17 May 2018 . PC Perspective . 2018-10-01.
  35. Web site: 38" Class 21:9 UltraWide WQHD+ IPS Curved LED Monitor (37.5" Diagonal) . LG Electronics . 2017-12-30.
  36. Web site: XR382CQK bmijqphuzx . Acer . 2017-12-30 . https://web.archive.org/web/20171230171950/https://www.acer.com/ac/en/US/content/model/UM.TX2AA.001 . 2017-12-30.
  37. Web site: Dell U3818DW . Singleton . Micah . 14 June 2017 . The Verge . Vox Media . 2018-01-12.
  38. Web site: HP Z38c . Thacker . Jim . 17 September 2017 . CG Channel . 2018-01-12.
  39. Web site: UHDTV Ecosystem Reference Diagram . SMPTE . 2018-05-15.
  40. Ultra High Definition Television: Threshold of a new age . ITU . 24 May 2012 . 2012-08-18.
  41. Web site: Recommendation ITU-R BT.2020-2 — Parameter values for ultra-high definition television systems for production and international programme exchange . International Telecommunication Union (ITU) . October 2015 . 2018-05-15.
  42. Web site: Phasing in Ultra High Definition . February 2017 . 2018-05-15 . Digital Video Broadcasting (DVB) . 2018-12-22 . https://web.archive.org/web/20181222175820/https://www.dvb.org/resources/public/factsheets/dvb_-_phasing_in_uhd.pdf . dead .
  43. Web site: CEA Updates Characteristics for Ultra High-Definition Displays . Consumer Electronics Association (CEA) . 24 June 2014 . 2018-05-15. 2018-04-30 . https://web.archive.org/web/20180430114352/https://www.cta.tech/News/Press-Releases/2014/June/CEA-Updates-Characteristics-for-Ultra-High-Definit.aspx . dead.
  44. Web site: What are 4K, QFHD and Ultra HD resolutions?. Philippides . Alexis . 17 April 2012 . Stuff-Review . 2018-05-15.
  45. Web site: Concept Samsung 82-Inch LCD World's Largest Ultra High-Definition . Malik . Haroon . 9 January 2008 . Gizmodo . 2013-05-22.
  46. Web site: Sony Announces TRIMASTER SRM-L560 HDTV . 6 October 2009 . HDTV Review . 2016-01-07 . https://web.archive.org/web/20160315215418/http://www.hdtvreview.com/news/2009/10/06/sony-announces-trimaster-srm-l560-hdtv/ . 2016-03-15 . dead.
  47. Web site: LG Shows Off 84-Inch 3DTV With 3,840 x 2,160 Resolution . Hannaford . Kat . 25 May 2010 . Gizmodo . 2013-05-22.
  48. Web site: 27.8" (R278D1) . Chimei Innolux . 2010-12-27 . https://web.archive.org/web/20110104080647/http://www.chimei-innolux.com/opencms/cmo/products/medical_display/products_medical_R278D1.html?__locale=en . 2011-01-04.
  49. Web site: Toshiba's REGZA 55x3 announced as world's first 4K2K TV with glasses-free 3D . Engadget . AOL . 2013-05-22.
  50. Web site: 4K Ultra HD Displays: What You Need to Know . Wiley . Craig . DisplayPort . 28 May 2013 . VESA . 2013-08-13.
  51. Web site: FAQ for HDMI 1.4 : Support for 4K format . HDMI Licensing . 2013-08-13.
  52. Web site: FAQ for HDMI 2.0 . HDMI Licensing . 2014-01-09.
  53. Web site: 4K Ultra High Resolution Development . NVIDIA Developer Zone . 13 September 2013 . NVIDIA . 2013-12-17.
  54. Web site: ASUS PQ321Q 31.5-in 4K 60 Hz Tiled Monitor Review . Shrout . Ryan . 19 July 2013 . PC Perspective . 2016-01-07.
  55. Web site: PB287Q 4K For The Masses – CES 2014 . ASUSTek . 2014-08-20 . https://web.archive.org/web/20140921160015/http://pcdiy.asus.com/2014/01/pb287q-4k-for-the-masses/ . 2014-09-21 . dead.
  56. Web site: Video Perspective: Samsung U28D590D 28-in 4K Single Stream 60 Hz Monitor Review . Shrout . Ryan . 9 May 2014 . PC Perspective . 2016-01-07.
  57. Web site: Sony Xperia Z5 Premium specs . phoneArena.com . 2016-02-08.
  58. Web site: Xperia XZ Premium . Sony Mobile . 2018-10-01.
  59. Web site: LG 31MU97-B: 31 Inch 4K IPS Monitor . LG . 2016-03-02.
  60. Web site: Distributing 4K and UHD Signals in Professional AV Environments . 2 March 2014 . 2016-01-07 . Extron .
  61. Web site: Forget 4K, LG ships a 105-inch 5K TV . Humphries . Matthew . 29 July 2014 . Ziff Davis . 2018-05-29 . 2018-06-12 . https://web.archive.org/web/20180612114501/https://www.geek.com/news/forget-4k-lg-ships-a-105-inch-5k-tv-1600612/ . dead .
  62. Web site: Samsung prices its 105" 5K UHD curved TV: $120,000 . Shilov . Anton . 23 July 2014 . Kitguru . 2018-05-29.
  63. Web site: LG Announces the 5K UltraWide 34WK95U: A 'Nano IPS' Monitor with a HDR600 Badge . Shilov . Anton . 28 December 2017 . AnandTech . Purch . 2018-05-29.
  64. Web site: Broekhuijsen . Niels . 2021-01-14 . LG's Huge 40-Inch Monitor Is First To Feature Thunderbolt 4 . 2021-01-23 . Tom's Hardware . en.
  65. Web site: LG 34BK95U: 34 Inch Class 21:9 UltraWide 5K2K Nano IPS LED Monitor w/ HDR 600 LG USA . LG Business Solutions . LG . 2019-02-09 . https://web.archive.org/web/20190209000258/https://www.lg.com/us/business/commercial-display/products/desktop-monitors/lg-34BK95U-W . 2019-02-09.
  66. Web site: Issues users need to understand when using UHD (4K x 2K) and UHD+ (5K x 3K) displays (Text and icons are too small etc.) . Dell . 2016-01-06.
  67. Web site: Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display . Anthony . Sebastian . 5 September 2014 . ExtremeTech . Ziff Davis . 2014-10-19 .
  68. Web site: Apple Special Event. October 16, 2014. . Apple . 2014-10-19.
  69. Answers to All of Your Questions About Apple's 5K iMac Display . Bonnington . Christina . 17 October 2014 . Wired . Condé Nast . 2014-10-19.
  70. Web site: Dell UltraSharp UP2715K . Chester . Edward . 5 October 2015 . TrustedReviews . 2016-01-06.
  71. Web site: VESA Releases DisplayPort 1.3 Standard: 50% More Bandwidth, New Features . Smith . Ryan . 16 September 2014 . AnandTech . Purch . 2016-01-06.
  72. Web site: VESA Publishes DisplayPort Standard Version 1.4 . DisplayPort . 2016-03-19.
  73. https://www.sony.com/electronics/support/res/manuals/4154/41544081M.pdf Sony NW-E390 SERIES Walkman Specifications
  74. 2.2 inch qqVGA AMOLED Drove by Ultra Low Temperature Poly Silicon (ULTPS) TFT Direct Fabricated Below 200 °C . Jang Yeon . Kwon . Ji Sim . Jung . Kyung Bae . Park . Jong Man . Kim . Hyuck . Lim . Sang Yoon . Lee . Jong Min . Kim . Takashi . Noguchi . Ji Ho . Hur . 8 . SID 2006 Digest . 37 . 2 . 2006 . 1358–61 . 10.1889/1.2433233. 110488279 .
  75. Web site: Technical data. Nintendo of Europe GmbH. May 20, 2023.
  76. https://www.sony.com/electronics/support/res/manuals/4154/41544081M.pdf Sony NWZ-E443 / E444 / E445 Walkman Specifications
  77. Web site: QVGA (Quarter Video Graphics Array) . Independent Media . Tech-FAQ . 2010-02-10.
  78. Accurate Power Estimation of LCD Panels for Notebook Design of Low-Cost 2.2-inch qVGA LTPS TFT-LCD Panel . Min-Seok . Shin . Jung-Whan . Choi . Yong-Jae . Kim . Kyong-Rok . Kim . Inhwan . Lee . Oh-Kyong . Kwon . SID 2007 Digest . 38 . 1 . 2007 . 260–263. 10.1889/1.2785279 . 109838866 .
  79. https://www.hp.com/us-en/shop/pdp/hp-color-laserjet-enterprise-m651n-printer HP Color LaserJet Enterprise M651n
  80. https://www.sony.com/electronics/support/digital-music-players-nw-nwz-zx-series/nw-zx100hn/specifications Sony NW-ZX100HN Specifications
  81. https://www.sony.com/electronics/support/mobile-phones-tablets-mobile-phones/xperia-e-dual/specifications Sony Xperia E dual Specifications
  82. Web site: Optoma DLP Pico projector "coming soon" to US . June . Laura . 24 November 2008 . Engadget . AOL . 2008-11-24.
  83. Web site: Screen compatibility overview . Android Developers . 2011-02-04.
  84. Web site: Picture Appears Stretched, Distorted, or Shrunken on My Laptop Screen − LCD and Flat-Panel Monitor Types With Associated Native Resolutions . List of the most common display standards from VGA up to QUXGA. Automatic translation can change page content and "switch" between two tables: one lists VGA to QUXGA, other lists WXGA to 8k . Dell Knowledge Base Article . . May 19, 2023.
  85. Web site: Chronology of IBM Personal Computers . Polsson . Ken . 9 November 2010 . 2010-11-18 . https://web.archive.org/web/20110607231233/http://www.islandnet.com/~KPOLSSON/ibmpc/ibm1987.htm . 2011-06-07.
  86. Web site: 2023-01-19 . 480p vs 480i - Streamer Tactics . 2023-01-31 . streamertactics.com . en-us.
  87. Web site: New resolutions for Microsoft Smartphone (320x240) and Pocket PC (640x480) are coming . MS Mobiles . 28 October 2003 . 2013-05-22 . https://web.archive.org/web/20031029033752/http://msmobiles.com/news.php/1541.html . 2003-10-29.
  88. Panasonic Introduces 2 New Cameras . Tech Tree. India . dead . https://web.archive.org/web/20090123073441/http://techtree.com/India/News/Panasonic_Introduces_2_New_Cameras/551-97953-893.html . 2009-01-23 .
  89. https://dl.dell.com/Manuals/all-products/esuprt_electronics/esuprt_tv/dell-w4200_Owner's%20Manual_en-us.pdf Dell W4200HD and W4200ED 42" Plasma TV Owner's Manual
  90. https://www.elotouch.com/media/product-documents/SW601504_0700L_ENGLISH.doc Elo User Manual Touchmonitor 0700L
  91. https://www.jvc.com/au/pro/professional-camcorders/connected-cam/gy-hc500e/ JVC GY-HC500E Camcorder
  92. https://www.sony.com/electronics/support/digital-music-players-nw-nwz-a-series/nw-a37hn/specifications Sony NW-A37HN Specifications
  93. Web site: NVIDIA Tegra FAQ . Nvidia . FAQ . FWVGA (854x480), SXGA (1280x1024), WSXGA+ (1680x1050) . 2013-05-22.
  94. https://www.sony.com/electronics/support/digital-music-players-nw-wm-series/nw-wm1a/specifications Sony NW-WM1A Specifications
  95. Encyclopedia: Ultra Video Graphics Array (UVGA) . Smart Computing . Smart Computing Encyclopedia . 16 January 2007 . https://web.archive.org/web/20120225044522/http://www.smartcomputing.com/editorial/dictionary/detail.asp?guid=&searchtype=&DicID=19364&RefType=Encyclopedia . 2012-02-25 . 2014-03-12.
  96. Web site: Same monitor yet better viewing . Verma . Vipul . The Tribune . 29 October 2001 . 2008-03-26.
  97. https://dl.dell.com/Manuals/all-products/esuprt_laptop/esuprt_inspiron_laptop/inspiron-mini1012_User's%20Guide_en-us.pdf Dell Inspiron 1012 – Comprehensive Specifications
  98. Web site: Education Price List . Apple, Inc. . The new iPod touch features FaceTime video calls, Retina display (960 x 640),... . 2011-07-12 . 2023-05-19.
  99. Web site: Apple stellt iPhone 4 vor . Apple, Inc. . Das beeindruckende 3,5 Zoll Retina Display von Apple hat eine Auflösung von 960 x 640 Pixeln. . de . 2010-06-07 . 2023-05-19.
  100. Web site: QuadVGA — 1280×960, 0.40" diagonal, single chip FLCoS display . www.miyotadca.com . MIYOTA Development Center Of America . 2023-05-20.
  101. Web site: JVC GY-HC500E - 4K ENG hand-held camcorder . www.jvc.com . Quad VGA (1280 x 960) . 2023-05-20.
  102. Web site: Sony α7R III 35-MM-VOLLFORMATKAMERA MIT AUTOFOKUS . www.sony.de . Quad-VGA . de . 2023-05-20.
  103. Web site: HMIDT952 - Flat screen, Harmony GTU, 19 W Touch Smart Display FWXGA . Schneider Electric . 2023-04-28.
  104. Web site: 7 Inch Delta FWXGA LCD Panel . Converters.tv . 2023-04-28.
  105. Web site: SPWG Notebook Panel Specification . Standard Panels Working Group . 14 March 2007 . 5–6, 18 . XGA, WXGA(I), WXGA(II), SXGA+, WSXGA+, UXGA, WUXGA, QXGA . 2013-05-22 . https://web.archive.org/web/20120424092158/http://www.spwg.org/spwg_spec_version3.8_3-14-2007.pdf . 2012-04-24.
  106. https://www.nickl.de/de/Products/CarImaging/ImageCutter120/96/ ImageCutter120 - Suported Resolutions
  107. https://projectorcatalog.com/xga-resolution/ What is XGA Resolution
  108. https://www.lenovo.com/nl/nl/accessories-and-monitors/monitors/office/T2054p-19-5-inchMonitorVGA+HDMI+DP/p/60G1MAT2EU Lenovo ThinkVision T2054p 20" WXGA+ Monitor
  109. https://www.hp.com/hpinfo/newsroom/press_kits/2008/connecting/ds_bn_6830s.pdf HP Compaq 6830s Notebook PC
  110. https://www.lenovo.com/au/en/p/accessories-and-software/docking/docking_usb-docks-(universal-cable-docks)/78023717 Lenovo StarTech - Portable Universal Laptop Travel Hub (USB3SMDOCKHV) - docking station
  111. https://www.lenovo.com/de/de/p/laptops/thinkpad/thinkpadz/thinkpad-z13-(13-inch-amd)/21d20029ge Lenovo ThinkPad Z13 AMD G1
  112. Web site: Lenovo ThinkPad P1 Gen 4 (16" Intel) – Specifications . www.lenovo.com . de . Display: WQUXGA (UHD+) (3840 x 2400) . 2023-05-21.
  113. Web site: HP ZBook Studio 16 Zoll G9 Mobile Workstation PC (62U04EA) – Specifications . www.hp.com . de . Display: WQUXGA (3840 x 2400) . 2023-05-21.
  114. Web site: XVGA . online encyclopedia . de . Roth . Andreas . www.prad.de . 6 August 2017 . Prad Inside Display Technologies . May 21, 2023.
  115. Web site: The XGA Graphics Chip . Necasek . Michal . The OS/2 Museum . 2013-08-01.
  116. Web site: Necasek . Michal . The 8514/A Graphics Accelerators . 2013-08-01 . The OS/2 Museum.
  117. Web site: VESA Asia Briefings . VESA . Powerpoint . October 2005 . 20 . WXGA (1280 x 768) . 2013-05-22 . https://web.archive.org/web/20051215105033/http://www.vesa.org/press/AsiaTourOct05.pdf . 2005-12-15 .
  118. Web site: X-5 Multicast Distribution System for Digital Signage . Silex technology . WXGA (1280 x 768), FWXGA (1360 x 768), WSXGA (1600 x 1024) . 2023-05-19.
  119. https://downloadcenter.samsung.com/content/UM/200905/20090522190102546/BN68-01981G-00L03-0421.pdf Samsung LE-32B450 C4W
  120. Web site: Plasma TVs . Hitachi . 2013-05-22 . https://web.archive.org/web/20071009123010/http://www.hitachi.ca/supportingdocs/en/forhome/plasma_tvs/plasma_chart_full.pdf . 1024 x 1080 (not named); 1366 x 768 (WXGA) . 2007-10-09 .
  121. Web site: TV Panels Standard . VESA . WXGA (1366 x 768), F-HD (1920 x 1080) . 10 March 2006 . 2023-05-20 . https://web.archive.org/web/20081209101345/http://www.vesa.org/Public/Panel%20Standards/TVpnlV1.pdf . 2008-12-09.
  122. Web site: LEARN MORE LCD Displays . Dell . 2013-05-22 .
  123. Web site: Help Me Decide . Lenovo . 2013-05-22 . https://web.archive.org/web/20140102192233/http://shop.lenovo.com/ISS_Static/merchandising/us/specialoffers/popups/help_me_decide/popup_helpme_display.html . 2014-01-02.
  124. Web site: Valve Steam Deck Specifications . www.steamdeck.com . https://web.archive.org/web/20240117113218/https://www.steamdeck.com/en/tech/deck . 7 February 2024. 2024-01-17 .
  125. Web site: Acer PH530 HDTV DLP Projector . NCIX . 2013-05-22 . https://web.archive.org/web/20120429023140/http://www.ncix.com/products/index.php?sku=22206&vpn=EY.J4401.007&manufacture=Acer . 2012-04-29.
  126. NEMATech Computer Display Standards Web site: NEMA Specifications . 2023-06-22 . dead . https://web.archive.org/web/20120302030131/http://www.millertech.com/Technical_Specs.htm . 2012-03-02 .
  127. Renesas Technology Releases R8J66730FP Liquid Crystal Panel Timing Controller Incorporating Overdrive Function for Improved Moving Image Display Capability and Color Conversion Function . Renesas Technology . 12 September 2005 . 2013-05-22 . https://web.archive.org/web/20060322075919/http://www.renesas.com/fmwk.jsp?cnt=press_release20050912.htm&fp=%2Fcompany_info%2Fnews_and_events%2Fpress_releases . 2006-03-22 . dead.
  128. Web site: 22-inch Apple Cinema Display . Apple . 24 June 2023.
  129. Web site: Introduction . Monitor Technology Guide . NEC Display Solutions . https://web.archive.org/web/20070315085244/http://www.necdisplay.com/support/css/monitortechguide/index05.htm . 2007-03-15 . 2013-05-22.
  130. News: http://www.nec.co.jp/press/ja/0207/0101.html . NEC . ja:プレスリリース . 1 July 2002 . ja.
  131. News: http://www.nec.co.jp/press/ja/0501/1901.html . NEC . ja:プレスリリース . 19 January 2005 . ja.
  132. https://www.dell.com/en-ie/shop/monitors-flat-panel-widescreen/ar/7818/2560x1600-wqxga?appliedRefinements=2584 2560x1600 (WQXGA) - Flat Screen & Widescreen Monitors
  133. Web site: Dell Latitude 9420/Latitude 9420 2-in-1 Setup and Specifications . www.dell.com . QHD+ (2560 x 1600) . 2023-05-23 .
  134. Web site: MSI Creator Z16 HX Studio - B13V Notebooks Specifications . de.msi.com . QHD+ (2560 x 1600) . de . 2023-05-20 .
  135. Web site: Razer Blade 16 - Specifications . www.razer.com . FHD+ (1920 x 1200, WUXGA), QHD+ (2560 x 1600 WQXGA), UHD+ (3840 x 2400 WQUXGA) . de . 2023-05-26 . UHD+ (3840 x 2400)
  136. Web site: Mac mini Core 2 Duo Early 2009 Nvidia specs. everymac.com. 3 May 2022.
  137. Web site: Apple iMac 20-Inch "Core 2 Duo" 2.66 (Early 2009) Specs. everymac.com. 3 May 2022.
  138. Web site: LG Gram 17Z990 (I7-8565U. WQXGA) Laptop Review.
  139. Web site: Razer Book RZ09-0357 - Specifications . www.razer.com . UHD+ (3840 x 2400) . 2023-05-26 . UHD+ (3840 x 2400)
  140. Web site: Gigabyte AERO 14 OLED (2023) - Specifications . www.gigabyte.com . 4K UHD+ 3840x2400 . ja . 2023-05-26 .
  141. ViewSonic Brings World's Highest Resolution Monitor To Its LCD Lineup . ViewSonic . 25 June 2002 . 2013-05-22 . https://web.archive.org/web/20021207180615/http://www.viewsonic.com/companyinfo/pressrelease_detail.cfm?key_press_release=155 . 2002-12-07.
  142. Web site: About Purchase of the Ultra High-Resolution and Ultra High-Density LCD Monitor . IDTech . 2013-05-22 . https://web.archive.org/web/20040405173127/http://www.idtech.co.jp/en/920LCD/how2buy.html . 2004-04-05.
  143. Web site: The 18:9 display dilemma: Will the new smartphone screens make our lives easier or do the opposite? . Bhagat . Hitesh Raj . Bajaj . Karan . 26 January 2018 . The Economic Times . Bennett, Coleman & Co. . 2018-10-01.
  144. Web site: Raptor SQ2826 EIZO . 2020-10-13 . EIZO .
  145. Web site: EV2730Q 26.5" 1920 x 1920 Square Monitor with IPS Panel. www.eizo.com.