In algebra, given a commutative ring R, the graded-symmetric algebra of a graded R-module M is the quotient of the tensor algebra of M by the ideal I generated by elements of the form:
xy-(-1)|x||y|yx
x2
xy=(-1)|x||y|yx
In spite of the name, the notion is a common generalization of a symmetric algebra and an exterior algebra: indeed, if V is a (non-graded) R-module, then the graded-symmetric algebra of V with trivial grading is the usual symmetric algebra of V. Similarly, the graded-symmetric algebra of the graded module with V in degree one and zero elsewhere is the exterior algebra of V.