Graded-symmetric algebra explained

In algebra, given a commutative ring R, the graded-symmetric algebra of a graded R-module M is the quotient of the tensor algebra of M by the ideal I generated by elements of the form:

xy-(-1)|x||y|yx

x2

when |x | is oddfor homogeneous elements x, y in M of degree |x |, |y |. By construction, a graded-symmetric algebra is graded-commutative; i.e.,

xy=(-1)|x||y|yx

and is universal for this.

In spite of the name, the notion is a common generalization of a symmetric algebra and an exterior algebra: indeed, if V is a (non-graded) R-module, then the graded-symmetric algebra of V with trivial grading is the usual symmetric algebra of V. Similarly, the graded-symmetric algebra of the graded module with V in degree one and zero elsewhere is the exterior algebra of V.

References

External links