Golden triangle (mathematics) explained

\varphi

to the base side:

{a\overb}=\varphi={1+\sqrt5\over2}1.618034~.

Angles

\theta=2\arcsin{b\over2a}=2\arcsin{1\over2\varphi}=2\arcsin{{\sqrt5-1}\over4}={\pi\over5}~rad=36\circ.

Hence the golden triangle is an acute (isosceles) triangle.

\pi

radians, each of the base angles (CBX and CXB) is:

\beta={{\pi-{\pi\over5}}\over2}~rad={2\pi\over5}~rad=72\circ.

[1]

Note:

\beta=\arccos\left(

\sqrt{5
-1}{4}\right)rad

={2\pi\over5}~rad=72\circ.

In other geometric figures

Logarithmic spiral

The golden triangle is used to form some points of a logarithmic spiral. By bisecting one of the base angles, a new point is created that in turn, makes another golden triangle.[4] The bisection process can be continued indefinitely, creating an infinite number of golden triangles. A logarithmic spiral can be drawn through the vertices. This spiral is also known as an equiangular spiral, a term coined by René Descartes. "If a straight line is drawn from the pole to any point on the curve, it cuts the curve at precisely the same angle," hence equiangular.[5] This spiral is different from the golden spiral: the golden spiral grows by a factor of the golden ratio in each quarter-turn, whereas the spiral through these golden triangles takes an angle of 108° to grow by the same factor.[6]

Golden gnomon

\tfrac{1}{\varphi}

of the golden ratio

\varphi

.

"The golden triangle has a ratio of base length to side length equal to the golden section φ, whereas the golden gnomon has the ratio of side length to base length equal to the golden section φ."[7]

{a'\overb'}={1\over\varphi}={{\sqrt5-1}\over2}0.618034.

Angles

(The distances AX and CX are both a′ = a = φ, and the distance AC is b′ = φ², as seen in the figure.)

\theta'=2\arcsin{b'\over{2a'}}=2\arcsin{{\varphi2}\over{2\varphi}}=2\arcsin{{1+\sqrt5}\over4}={3\pi\over5}~rad=108\circ.

Hence the golden gnomon is an obtuse (isosceles) triangle.

(

Note:

\theta'=\arccos\left(

1-\sqrt5
4

\right)rad={3\pi\over5}~rad=108\circ.)

\pi

radians, each of the base angles CAX and ACX is:

\beta'=\theta={\pi-{3\pi\over5}\over2}~rad={\pi\over5}~rad=36\circ.

Note:

\beta'=\theta=\arccos\left(

1+\sqrt5
4

\right)rad={\pi\over5}~rad=36\circ.

Bisections

Tilings

See also

External links

Notes and References

  1. Book: Elam , Kimberly . 2001 . Geometry of Design . Princeton Architectural Press . New York . 1-56898-249-6.
  2. Web site: Golden Triangle. Weisstein. Eric W.. mathworld.wolfram.com. en. 2019-12-26.
  3. Book: 1970. Tilings Encyclopedia. dead. https://web.archive.org/web/20090524004703/http://tilings.math.uni-bielefeld.de/substitution_rules/robinson_triangle. 2009-05-24.
  4. Book: Huntley , H.E. . 1970 . The Divine Proportion: A Study In Mathematical Beauty . Dover Publications Inc . New York . 0-486-22254-3 . registration .
  5. Book: Livio , Mario . 2002 . The Golden Ratio: The Story of Phi, The World's Most Astonishing Number . Broadway Books . New York . 0-7679-0815-5 .
  6. Book: Loeb . Arthur L. . Varney . William . Hargittai . István . Pickover . Clifford A. . Does the golden spiral exist, and if not, where is its center? . https://books.google.com/books?id=Ga8aoiIUx1gC&pg=PA47 . March 1992 . 10.1142/9789814343084_0002 . 47–61 . World Scientific . Spiral Symmetry.
  7. Book: Loeb , Arthur . 1992 . Concepts and Images: Visual Mathematics . Birkhäuser Boston . Boston . 0-8176-3620-X . 180 .
  8. Web site: Golden Gnomon. Weisstein. Eric W.. mathworld.wolfram.com. en. 2019-12-26.