Glycolonitrile Explained

Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH2CN. It is the simplest cyanohydrin and it is derived from formaldehyde. It is a colourless liquid that dissolves in water and ether. Because glycolonitrile decomposes readily into formaldehyde and hydrogen cyanide, it is listed as an extremely hazardous substance. In January 2019, astronomers reported the detection of glycolonitrile, another possible building block of life among other such molecules, in outer space.[1]

Synthesis and reactions

Glycolonitrile is produced by reacting formaldehyde with hydrogen cyanide at near-neutral pH, but with small amounts of catalytic base.[2] Glycolonitrile polymerizes under alkaline conditions above pH 7.0. As the product of polymerization is an amine with a basic character, the reaction is self-catalysed, gaining in speed with ongoing conversion.

Glycolonitrile can react with ammonia to give aminoacetonitrile, which can be hydrolysed to give glycine:

HOCH2CN + NH3 → H2NCH2CN + H2O

H2NCH2CN + 2 H2O → H2NCH2CO2H + NH3The industrially important chelating agent EDTA is prepared from glycolonitrile and ethylenediamine followed by hydrolysis of the resulting tetranitrile. Nitrilotriacetic acid is prepared similarly.[2]

Notes and References

  1. News: Queen Mary University of London . Queen Mary University of London . Astronomers find star material could be building block of life . 23 January 2019 . . 24 January 2019 .
  2. Peter Pollak, Gérard Romeder, Ferdinand Hagedorn, Heinz-Peter Gelbke "Nitriles" Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.