Fuzzy complex explained
Fuzzy complexes are protein complexes, where structural ambiguity or multiplicity exists and is required for biological function.[1] [2] Alteration, truncation or removal of conformationally ambiguous regions impacts the activity of the corresponding complex.[3] [4] [5] Fuzzy complexes are generally formed by intrinsically disordered proteins.[6] [7] Structural multiplicity usually underlies functional multiplicity of protein complexes [8] [9] [10] following a fuzzy logic. Distinct binding modes of the nucleosome are also regarded as a special case of fuzziness.[11] [12]
Historical background
For almost 50 years molecular biology was based on two dogmas: (i) equating biological function of the protein with a unique three-dimensional structure and (ii) assuming exquisite specificity in protein complexes. Specificity/selectivity is ensured by unambiguous set of interactions formed between the protein and its ligand (another protein, DNA, RNA or small molecule). Many protein complexes however, contain functionally important/critical regions, which remain highly dynamic in the complex or adopt different conformations.[13] This phenomenon is defined fuzziness. The most pertinent example is the cyclin-dependent kinase inhibitor Sic1, which binds to the SCF subunit of Cdc4 in a phosphorylation dependent manner.[14] No regular secondary structures are gained upon phosphorylation and the different phosphorylation sites interchange in the complex.[15]
Classification of fuzzy complexes
Structural ambiguity in protein complexes covers a wide spectrum. In a polymorphic complex, the protein adopts two or more different conformations upon binding to the same partner, and these conformations can be resolved.[16] Clamp,[17] flanking [18] [19] and random complexes[20] [21] are dynamic, where ambiguous conformations interchange with each other and cannot be resolved. Interactions in fuzzy complexes are usually mediated by short motifs.[22] Flanking regions are tolerant to sequence changes as long as the amino acid composition is maintained, for example in case of linker histone C-terminal domains [23] and H4 histone N-terminal domains.[24]
Regulatory pathways via fuzzy regions
Fuzzy regions modulate the conformational equilibrium [25] or flexibility [26] of the binding interface via transient interactions.[27] Dynamic regions can also compete with binding sites[28] or tether them to the target.[29] Modifications of fuzzy regions by further interactions,[30] or posttranslational modifications[31] [32] impact binding affinity or specificity. Alternative splicing can modulate the length of fuzzy regions resulting in context-dependent binding (e.g. tissue-specificity) on the complex.[33] [34] [35] EGF/MAPK, TGF-β and WNT/Wingless signaling pathways employ tissue-specific fuzzy regions.
Notes and References
- 10.1016/j.tibs.2007.10.003 . 18054235 . Fuzzy complexes: Polymorphism and structural disorder in protein–protein interactions . Trends in Biochemical Sciences . 33 . 1 . 2–8 . 2008 . Tompa . Peter . Fuxreiter . Monika .
- Fuxreiter, M. & Tompa, P. (2011) Fuzziness: Structural Disorder in Protein Complexes Austin, New York.
- 10.1126/science.1111915 . 15994560 . Variable Control of Ets-1 DNA Binding by Multiple Phosphates in an Unstructured Region . Science . 309 . 5731 . 142–5 . 2005 . Pufall . M. A . Lee . Gregory M . Nelson . Mary L . Kang . Hyun-Seo . Velyvis . Algirdas . Kay . Lewis E . McIntosh . Lawrence P . Graves . Barbara J . 2005Sci...309..142P . free .
- 10.1126/science.1120941 . 16424299 . The Ste5 Scaffold Allosterically Modulates Signaling Output of the Yeast Mating Pathway . Science . 311 . 5762 . 822–6 . 2006 . Bhattacharyya . R. P . Reményi . Attila . Good . Matthew C . Bashor . Caleb J . Falick . Arnold M . Lim . Wendell A . 2006Sci...311..822B . 13882487 . free .
- 10.1016/j.jmb.2009.05.059 . 19481089 . 2739810 . Internal Regulatory Interactions Determine DNA Binding Specificity by a Hox Transcription Factor . Journal of Molecular Biology . 390 . 4 . 760–74 . 2009 . Liu . Ying . Matthews . Kathleen S . Bondos . Sarah E .
- 9697202 . Thousands of proteins likely to have long disordered regions . 1998 . Romero . P . Pacific Symposium on Biocomputing . 437–48 . Obradovic . Z . Kissinger . C. R . Villafranca . J. E . Garner . E . Guilliot . S . Dunker . A. K .
- 10.1006/jmbi.1999.3110 . 10550212 . Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm . Journal of Molecular Biology . 293 . 2 . 321–31 . 1999 . Wright . Peter E . Jane Dyson. Dyson . H. Jane .
- 10.1016/j.jmb.2007.12.016 . 18177895 . 2350195 . Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1 . Journal of Molecular Biology . 376 . 3 . 827–38 . 2008 . Galea . Charles A . Nourse . Amanda . Wang . Yuefeng . Sivakolundu . Sivashankar G . Heller . William T . Kriwacki . Richard W .
- 10.1038/nchembio.127 . 19008886 . 2921704 . Malleable machines take shape in eukaryotic transcriptional regulation . Nature Chemical Biology . 4 . 12 . 728–37 . 2008 . Fuxreiter . Monika . Tompa . Peter . Simon . István . Uversky . Vladimir N . Hansen . Jeffrey C . Asturias . Francisco J .
- 10.1038/nchembio.536 . 21358637 . 3124363 . Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21 . Nature Chemical Biology . 7 . 4 . 214–21 . 2011 . Wang . Yuefeng . Fisher . John C . Mathew . Rose . Ou . Li . Otieno . Steve . Sublet . Jack . Xiao . Limin . Chen . Jianhan . Roussel . Martine F . Kriwacki . Richard W .
- 10.1371/journal.pone.0012984 . 20886052 . 2945322 . Weakly Positioned Nucleosomes Enhance the Transcriptional Competency of Chromatin . PLOS ONE . 5 . 9 . e12984 . 2010 . Belch . Yaakov . Yang . Jingyi . Liu . Yang . Malkaram . Sridhar A . Liu . Rong . Riethoven . Jean-Jack M . Ladunga . Istvan . 2010PLoSO...512984B . free .
- 10.1128/MCB.05276-11 . 21896781 . 3209338 . Evolution of Nucleosome Occupancy: Conservation of Global Properties and Divergence of Gene-Specific Patterns . Molecular and Cellular Biology . 31 . 21 . 4348–55 . 2011 . Tsui . K . Dubuis . S . Gebbia . M . Morse . R. H . Barkai . N . Tirosh . I . Nislow . C .
- 10.1039/c1mb05234a . 21927770 . Fuzziness: Linking regulation to protein dynamics . Molecular BioSystems . 8 . 1 . 168–77 . 2012 . Fuxreiter . Monika .
- 10.1038/35107009 . 11734846 . Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication . Nature . 414 . 6863 . 514–21 . 2001 . Nash . Piers . Tang . Xiaojing . Orlicky . Stephen . Chen . Qinghua . Gertler . Frank B . Mendenhall . Michael D . Sicheri . Frank . Pawson . Tony . Tyers . Mike . 2001Natur.414..514N . 16924667 .
- 10.1073/pnas.0809222105 . 25465359 . 19008353 . 2582940 . Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor . Proceedings of the National Academy of Sciences . 105 . 46 . 17772–7 . 2008 . Mittag . T . Orlicky . S . Choy . W.-Y . Tang . X . Lin . H . Sicheri . F . Kay . L. E . Tyers . M . Forman-Kay . J. D . 2008PNAS..10517772M . free .
- 10.1038/emboj.2011.461 . 22193718 . 3280557 . How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly . The EMBO Journal . 31 . 4 . 1000–13 . 2012 . Didry . Dominique . Cantrelle . Francois-Xavier . Husson . Clotilde . Roblin . Pierre . Moorthy . Anna M Eswara . Perez . Javier . Le Clainche . Christophe . Hertzog . Maud . Guittet . Eric . Carlier . Marie-France . Van Heijenoort . Carine . Renault . Louis .
- 10.1006/jmbi.2000.3642 . 10764582 . Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α . Journal of Molecular Biology . 297 . 5 . 1183–94 . 2000 . Fontes . Marcos R.M . Teh . Trazel . Kobe . Bostjan .
- 10.1074/jbc.M207361200 . 12196545 . Roles of Phosphorylation and Helix Propensity in the Binding of the KIX Domain of CREB-binding Protein by Constitutive (c-Myb) and Inducible (CREB) Activators . Journal of Biological Chemistry . 277 . 44 . 42241–8 . 2002 . Zor . Tsaffrir . Mayr . Bernhard M . Dyson . H. Jane . Montminy . Marc R . Wright . Peter E . free .
- 10.1016/S1097-2765(03)00115-1 . 12718882 . Structural Basis for the Molecular Recognition between Human Splicing Factors U2AF65 and SF1/mBBP . Molecular Cell . 11 . 4 . 965–76 . 2003 . Selenko . Philipp . Gregorovic . Goran . Sprangers . Remco . Stier . Gunter . Rhani . Zakaria . Krämer . Angela . Sattler . Michael . free .
- 10.1074/jbc.M310948200 . 14625282 . Quantitative Observation of Backbone Disorder in Native Elastin . Journal of Biological Chemistry . 279 . 9 . 7982–7 . 2004 . Pometun . Maxim S . Chekmenev . Eduard Y . Wittebort . Richard J . free .
- 10.1021/bi035900h . 14967045 . Homooligomerization of the Cytoplasmic Domain of the T Cell Receptor ζ Chain and of Other Proteins Containing the Immunoreceptor Tyrosine-Based Activation Motif . Biochemistry . 43 . 7 . 2049–61 . 2004 . Sigalov . Alexander . Aivazian . Dikran . Stern . Lawrence .
- 10.1016/j.tibs.2010.10.002 . 21146412 . How viruses hijack cell regulation . Trends in Biochemical Sciences . 36 . 3 . 159–69 . 2011 . Davey . Norman E . Travé . Gilles . Gibson . Toby J .
- 10.1021/bi801636y . 19072710 . 2644900 . Chromatin Condensing Functions of the Linker Histone C-Terminal Domain Are Mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder . Biochemistry . 48 . 1 . 164–72 . 2009 . Lu . Xu . Hamkalo . Barbara . Parseghian . Missag H . Hansen . Jeffrey C .
- 10.1074/jbc.M109.011288 . 19395382 . 2719306 . Determinants of Histone H4 N-terminal Domain Function during Nucleosomal Array Oligomerization . Journal of Biological Chemistry . 284 . 25 . 16716–22 . 2009 . McBryant . Steven J . Klonoski . Joshua . Sorensen . Troy C . Norskog . Sarah S . Williams . Sere . Resch . Michael G . Toombs . James A . Hobdey . Sarah E . Hansen . Jeffrey C . free .
- 10.1021/bi0500729 . 16171389 . Structural and Thermodynamical Characterization of the Complete p21 Gene Product of Max . Biochemistry . 44 . 38 . 12746–58 . 2005 . Naud . Jean-François . McDuff . François-Olivier . Sauvé . Simon . Montagne . Martin . Webb . Bradley A . Smith . Steven P . Chabot . Benoit . Lavigne . Pierre .
- 10.1016/j.jmb.2008.07.064 . 18692067 . 4808631 . The Affinity of Ets-1 for DNA is Modulated by Phosphorylation Through Transient Interactions of an Unstructured Region . Journal of Molecular Biology . 382 . 4 . 1014–30 . 2008 . Lee . Gregory M . Pufall . Miles A . Meeker . Charles A . Kang . Hyun-Seo . Graves . Barbara J . McIntosh . Lawrence P .
- 10.1016/j.tibs.2011.04.006 . 21620710 . Dynamic protein–DNA recognition: Beyond what can be seen . Trends in Biochemical Sciences . 36 . 8 . 415–23 . 2011 . Fuxreiter . Monika . Simon . Istvan . Bondos . Sarah .
- 10.1016/j.jmb.2007.09.075 . 17988686 . Mapping Intramolecular Interactions between Domains in HMGB1 using a Tail-truncation Approach . Journal of Molecular Biology . 374 . 5 . 1286–97 . 2007 . Watson . Matthew . Stott . Katherine . Thomas . Jean O .
- 10.1080/07391102.2005.10507052 . 16060685 . Secondary Structure and Dynamics of an Intrinsically Unstructured Linker Domain . Journal of Biomolecular Structure and Dynamics . 23 . 2 . 113–24 . 2005 . Olson . Katie E . Narayanaswami . Pranesh . Vise . Pamela D . Lowry . David F . Wold . Marc S . Daughdrill . Gary W . 37429006 .
- 10.1016/j.bpj.2008.10.003 . 19134474 . 2710047 . Induced Secondary Structure and Polymorphism in an Intrinsically Disordered Structural Linker of the CNS: Solid-State NMR and FTIR Spectroscopy of Myelin Basic Protein Bound to Actin . Biophysical Journal . 96 . 1 . 180–91 . 2009 . Ahmed . Mumdooh A.M . Bamm . Vladimir V . Shi . Lichi . Steiner-Mosonyi . Marta . Dawson . John F . Brown . Leonid . Harauz . George . Ladizhansky . Vladimir . 2009BpJ....96..180A .
- 10.1111/j.1742-4658.2006.05165.x . 16689930 . Gradual phosphorylation regulates PC4 coactivator function . FEBS Journal . 273 . 7 . 1430–44 . 2006 . Jonker . Hendrik R. A . Wechselberger . Rainer W . Pinkse . Martijn . Kaptein . Robert . Folkers . Gert E . 1874/19762 . 38856641 . free .
- 10.1074/jbc.M109.001958 . 19605348 . 2782050 . Phosphorylated Intrinsically Disordered Region of FACT Masks Its Nucleosomal DNA Binding Elements . Journal of Biological Chemistry . 284 . 36 . 24610–21 . 2009 . Tsunaka . Yasuo . Toga . Junko . Yamaguchi . Hiroto . Tate . Shin-Ichi . Hirose . Susumu . Morikawa . Kosuke . free .
- 10.1074/jbc.M212057200 . 12816948 . Regulation of the NEDD8 Conjugation System by a Splicing Variant, NUB1L . Journal of Biological Chemistry . 278 . 35 . 32905–13 . 2003 . Tanaka . Tomoaki . Kawashima . Hidenori . Yeh . Edward T. H . Kamitani . Tetsu . free .
- 10.1074/jbc.M800375200 . 18508761 . 2475714 . Multiple Intrinsically Disordered Sequences Alter DNA Binding by the Homeodomain of the Drosophila Hox Protein Ultrabithorax . Journal of Biological Chemistry . 283 . 30 . 20874–87 . 2008 . Liu . Ying . Matthews . Kathleen S . Bondos . Sarah E . free .
- 10.1073/pnas.1100990108 . 21788518 . 3156161 . Evolution of a derived protein-protein interaction between HoxA11 and Foxo1a in mammals caused by changes in intramolecular regulation . Proceedings of the National Academy of Sciences . 108 . 32 . E414–20 . 2011 . Brayer . K. J . Lynch . V. J . Wagner . G. P . 2011PNAS..108E.414B . free .