Full-frame DSLR explained

A full-frame DSLR is a digital single-lens reflex camera (DSLR) with a 35 mm image sensor format .[1] [2] Historically, 35 mm was one of the standard film formats, alongside larger ones, such as medium format and large format. The full-frame DSLR is in contrast to full-frame mirrorless interchangeable-lens cameras, and DSLR and mirrorless cameras with smaller sensors (for instance, those with a size equivalent to APS-C-size film), much smaller than a full 35 mm frame. Many digital cameras, both compact and SLR models, use a smaller-than-35 mm frame as it is easier and cheaper to manufacture imaging sensors at a smaller size. Historically, the earliest digital SLR models, such as the Nikon NASA F4 or Kodak DCS 100, also used a smaller sensor.

Kodak states that 35 mm film (note: in "Academy format", 21.0 mm × 15.2 mm) has the equivalent of 6K horizontal resolution, according to a senior vice president of IMAX.[3] This equates to 10K horizontal resolution in full-frame size.

Use of 35 mm film-camera lenses

If the lens mounts are compatible, many lenses, including manual-focus models, designed for 35 mm cameras can be mounted on DSLR cameras. When a lens designed for a full-frame camera, whether film or digital, is mounted on a DSLR with a smaller sensor size, only the center of the lenses image circle is captured. The edges are cropped off, which is equivalent to zooming in on the center section of the imaging area. The ratio of the size of the full-frame 35 mm format to the size of the smaller format is known as the "crop factor" or "focal-length multiplier", and is typically in the range 1.3–2.0 for non-full-frame digital SLRs.

Advantages and disadvantages of full-frame digital SLRs

35 mm lenses

When used with lenses designed for full frame film or digital cameras, full-frame DSLRs offer a number of advantages compared to their smaller-sensor counterparts. One advantage is that wide-angle lenses designed for full-frame 35 mm retain that same wide angle of view. On smaller-sensor DSLRs, wide-angle lenses have smaller angles of view equivalent to those of longer-focal-length lenses on 35 mm film cameras. For example, a 24 mm lens on a camera with a crop factor of 1.5 has a 62° diagonal angle of view, the same as that of a 36 mm lens on a 35 mm film camera. On a full-frame digital camera, the 24 mm lens has the same 84° angle of view as it would on a 35 mm film camera.

If the same lens is used on both full-frame and cropped formats, and the subject distance is adjusted to have the same field of view (i.e., the same framing of the subject) in each format, depth of field (DoF) is in inverse proportion to the format sizes, so for the same f-number, the full-frame format will have less DoF. Equivalently, for the same DoF, the full-frame format will require a larger f-number (that is, a smaller aperture diameter). This relationship is approximate and holds for moderate subject distances, breaking down as the distance with the smaller format approaches the hyperfocal distance, and as the magnification with the larger format approaches the macro range.

There are optical quality implications as well—not only because the image from the lens is effectively cropped—but because many lens designs are now optimized for sensors smaller than . The rear element of any SLR lens must have clearance for the camera's reflex mirror to move up when the shutter is released; with a wide-angle lens, this requires a retrofocus design, which is generally of inferior optical quality.[4] Because a cropped-format sensor can have a smaller mirror, less clearance is needed, and some lenses, such as the EF-S lenses for the Canon APS-C sized bodies,[5] are designed with a shorter back-focus distance; however, they cannot be used on bodies with larger sensors.

The full-frame sensor can also be useful with wide-angle perspective control or tilt/shift lenses; in particular, the wider angle of view is often more suitable for architectural photography.

While full-frame DSLRs offer advantages for wide-angle photography, smaller-sensor DSLRs offer some advantages for telephoto photography because the smaller angle of view of small-sensor DSLRs enhances the telephoto effect of the lenses. For example, a 200 mm lens on a camera with a crop factor of 1.5× has the same angle of view as a 300 mm lens on a full-frame camera. The extra "reach", for a given number of pixels, can be helpful in specific areas of photography such as wildlife or sports.[6]

Lower size sensors also allow for the use of a wider range of lenses, since some types of optical impurities (specifically vignetting) are most visible around the edge of the lens. By only using the center of the lens, these impurities are not noticed. In practice, this allows for the use of lower cost lenses without corresponding loss of quality.[7]

Finally, full frame sensors allow for sensor designs that result in lower noise levels at high ISO [8] and a greater dynamic range in captured images. Pixel density is lower on full frame sensors. This means the pixels can be either spaced further apart from each other, or each photodiode can be manufactured at a slightly larger size. Larger pixel sizes can capture more light which has the advantage of allowing more light to be captured before over saturation of the photodiode. Additionally, less noise is generated by adjacent pixels and their emf fields with larger photodiodes or greater spacing between photodiodes. For a given number of pixels, the larger sensor allows for larger pixels or photosites that provide wider dynamic range and lower noise at high ISO levels.[9] As a consequence, full-frame DSLRs may produce better quality images in certain high contrast or low light situations.

Production costs for a full-frame sensor can exceed twenty times the costs for an APS-C sensor. Only 20 full-frame sensors will fit on an 8inches silicon wafer, and yield is comparatively low because the sensor's large area makes it very vulnerable to contaminants—20 evenly distributed defects could theoretically ruin an entire wafer. Additionally, when full-frame sensors were first produced, they required three separate exposures during the photolithography stage, tripling the number of masks and exposure processes.[10] Modern photolithography equipment now allows single-pass exposures for full-frame sensors, but other size-related production constraints remain much the same.

Some full-frame DSLRs intended mainly for professional use include more features than typical consumer-grade DSLRs, so some of their larger dimensions and increased mass result from more rugged construction and additional features as opposed to this being an inherent consequence of the full-frame sensor.

Past and present full-frame DSLRs

DSLRs

The Nikon E2/E2s (1994),[22] E2N/E2NS (1996)[23] and E3/E3S (1998)[24] digital SLRs as well as the similar Fujifilm Fujix DS-505/DS-515, DS-505A/DS-515A and DS-560/DS-565 models used a reduction optical system (ROS) to compress a full-frame 35 mm field onto a smaller 2/3-inch (11 mm diagonal) CCD imager. They were therefore not digital SLRs with full-frame sensors, however had an angle of view equivalent to full-frame digital SLRs for a given lens; they had no crop factor with respect to angle of view.[25]

The first full-frame DSLR cameras were developed in Japan from around 2000 to 2002: the MZ-D by Pentax,[26] the N Digital by Contax's Japanese R6D team,[27] and the EOS-1Ds by Canon.[28]

Nikon has designated its full frame cameras as FX format and its smaller sensor interchangeable-lens camera formats as DX and CX.

Other technologies

Notes and References

  1. Book: An Illustrated A to Z of Digital Photography: People And Portraits . Nigel Atherton . Steve Crabb . Tim Shelbourne . Sterling Publishing Co. Inc . 2006 . 2-88479-087-X.
  2. Book: Digital Macro Photography . Ross Hoddinott . Sterling Publishing Co. Inc . 2006 . 1-86108-452-8.
  3. Web site: /Film Interview: IMAX Executives Talk 'The Hunger Games: Catching Fire' and IMAX Misconceptions . Slash Film. December 2, 2013 . December 17, 2013.
  4. Web site: Retrofocus Design Problems: A Synopsis . https://archive.today/20130103050721/http://www.camerarepair.com/Retrofocus-Design-Problems-A-Synopsis-T37.html . dead . 2013-01-03 . Camerarepair.com . 2010-12-30 .
  5. Web site: The Canon Camera Story: 2001-2004. November 2004. 2009-09-26. https://web.archive.org/web/20090709152829/http://www.canon.com/camera-museum/history/canon_story/2001_2004/2001_2004.html. 9 July 2009. dead.
  6. Book: Digital Nature Photography: The Art and the Science . Barbara Gerlach . Focal Press . 2007 . 978-0-240-80856-7 . 67 .
  7. Web site: Bourne. Scott. Seven Myths About the Need for Full Frames. 15 October 2013. https://web.archive.org/web/20161214165448/https://photofocus.com/2013/03/14/seven-myths-about-the-need-for-full-frame-camera-bodies/. 14 December 2016. dead.
  8. Web site: Studio shot comparison. November 2019. 2019-02-06.
  9. Web site: Full-frame sensors . 11 May 2009 . Photocrati . 2010-12-30.
  10. Canon's Full-Frame CMOS Sensors: The Finest Tools for Digital Photography. 2006. 2009-12-26. Canon. https://web.archive.org/web/20101010173138/http://www.usa.canon.com/uploadedimages/FCK/Image/White%20Papers/Canon_CMOS_WP.pdf. 2010-10-10.
  11. Canon U.S.A. Introduces The New Canon EOS-1D X Digital SLR Camera, Re-Designed From The Inside Out. October 18, 2011. Canon U.S.A.. October 18, 2011.
  12. Canon Announces Its Smallest and Lightest Full-Frame Digital SLR Camera For Serious Photographers. September 17, 2012. Canon U.S.A., Inc.. September 17, 2012.
  13. Web site: Nikon D3x press announcement as of November 30th, 2008. 2008-11-30. Press.nikonusa.com. 2010-12-30. dead. https://web.archive.org/web/20110110041651/http://press.nikonusa.com/2008/11/nikon_unveils_a_digital_master.php. 2011-01-10.
  14. Web site: Nikon D3s press announcement as of October 14th, 2009 . Press.nikonusa.com . 2009-10-14 . 2010-12-30 . dead . https://web.archive.org/web/20110110032225/http://press.nikonusa.com/2009/10/the_imaging_evolution_continue.php . 2011-01-10 .
  15. When There Is No Second Chance: The New Nikon FX-Format D4 Multi-Media Digital SLR is The Definitive Unification Of Speed And Precision . Nikon Inc. . January 5, 2012 . January 6, 2012 . dead . https://web.archive.org/web/20120816053405/http://www.nikonusa.com/About-Nikon/Press-Room/Press-Release/h1jhd6hh/When-There-Is-No-Second-Chance:-The-New-Nikon-FX-Format-D4-Multi-Media-Digital-SLR-is-The-Definitive-Unification-Of-Speed-And-Precision.html . August 16, 2012 .
  16. Expectations Surpassed: The 36.3-Megapixel Nikon D800 Is The Multimedia HD-SLR That Shatters Conventional Resolution Barriers For Maximum Fidelity. February 6, 2012. Nikon Inc.. February 7, 2012. dead. https://web.archive.org/web/20110830121517/http://www.canon.ru/For%5FHome/Product%5FFinder/Cameras/Digital%5FSLR/EOS%5F7D/. August 30, 2011.
  17. Fall in Love Again: New Df D-SLR is Undeniably a Nikon with Legendary Performance and Timeless Design. November 4, 2013. Nikon Inc.. November 5, 2013.
  18. Performance that Fuels the Passion: The New Nikon D600 Puts FX-Format in Focus for Photo Enthusiasts. September 13, 2012. Nikon Inc.. September 13, 2012.
  19. Concentrate on the Clarity: The New Nikon D610 FX-Format D-SLR Places Emphasis on the Image Making Experience. October 8, 2013. Nikon Inc.. October 8, 2013.
  20. Web site: Sony α DSLR-A850 press announcement as of August 27th, 2009 . News.sel.sony.com . 2009-08-27 . 2010-12-30 . 2011-07-16 . https://web.archive.org/web/20110716105157/http://news.sel.sony.com/en/press_room/consumer/digital_imaging/digital_cameras/dslr/release/41559.html . dead .
  21. Sony introduces full-frame α99 . Sony . September 12, 2012 . September 17, 2012 . https://web.archive.org/web/20120917035111/http://presscentre.sony.eu/content/Detail.aspx?ReleaseID=8033&NewsAreaID=2 . 17 September 2012 . dead .
  22. Web site: Technical information on Nikon E2/E2s and Fujifilm Fujix DS-505/DS-515 at MIR - Photography in Malaysia . Mir.com.my . 2010-12-30.
  23. Web site: Technical information on Nikon E2N/E2Ns and Fujifilm Fujix DS-505A/DS-515A at MIR - Photography in Malaysia . Mir.com.my . 2010-12-30.
  24. Web site: Technical information on Nikon E3/E3s and Fujifilm Fujix DS-560/DS-565 at MIR - Photography in Malaysia . Mir.com.my . 2010-12-30.
  25. Jarle Aasland, Nikon E2N, NikonWeb.com.
  26. Web site: The long, difficult road to Pentax full-frame. dpreview.com.
  27. British Journal of Photography, Issues 7410-7422, 2003, page 2
  28. Web site: Canon EOS-1Ds, 11 megapixel full-frame CMOS. dpreview.com.
  29. ISO value, at which the noise starts to disturb the photo. Unit: ISO. More at DxOMark - Use Case Scores
  30. Data taken from specification pages of Digital Photography Review review pages (usually page #2 of given camera review), e.g. here for a Nikon D3000
  31. ISO value, at which the noise starts to disturb the photo. Unit: ISO. More at DxOMark Sensor Scores - Sports & action photography: Low-Light ISO
  32. Please specify if battery and card included! Data taken from specification pages of Digital Photography Review review pages (usually page #2 of given camera review), e.g. here for a Nikon D3000
  33. Asahi Optical Historical Club (2001) "MR-52" 6 Megapixel digital SLR
  34. Web site:  - Charlie White . Charlie White's Gizmodo PMA March 8th, 2007 report on Sony press announcement in regard to Sony Alpha flagship model "CX62500" . Gizmodo.com . 2007-03-08 . 2010-12-30.
  35. Web site: Matthias R. . Paul . Sony Alpha CX model codes overview . 2009-09-30 . de . Minolta-Forum . 2016-01-01 . dead . https://web.archive.org/web/20160401150359/http://www.mi-fo.de/forum/index.php?showtopic=18771&st=0&p=249551&#entry249551 . 2016-04-01.