In actuarial science, force of mortality represents the instantaneous rate of mortality at a certain age measured on an annualized basis. It is identical in concept to failure rate, also called hazard function, in reliability theory.
In a life table, we consider the probability of a person dying from age x to x + 1, called qx. In the continuous case, we could also consider the conditional probability of a person who has attained age (x) dying between ages x and x + Δx, which is
Px(\Deltax)=P(x<X<x+\Delta x\mid X>x)=
FX(x+\Delta x)-FX(x) | |
(1-FX(x)) |
where FX(x) is the cumulative distribution function of the continuous age-at-death random variable, X. As Δx tends to zero, so does this probability in the continuous case. The approximate force of mortality is this probability divided by Δx. If we let Δx tend to zero, we get the function for force of mortality, denoted by
\mu(x)
\mu(x)=\lim\Delta
FX(x+\Delta x)-FX(x) | |
\Deltax(1-FX(x)) |
=
F'X(x) | |
1-FX(x) |
Since fX(x)=F 'X(x) is the probability density function of X, and S(x) = 1 - FX(x) is the survival function, the force of mortality can also be expressed variously as:
\mu(x)= | fX(x) | =- |
1-FX(x) |
S'(x) | =-{ | |
S(x) |
d | |
dx |
To understand conceptually how the force of mortality operates within a population, consider that the ages, x, where the probability density function fX(x) is zero, there is no chance of dying. Thus the force of mortality at these ages is zero. The force of mortality μ(x) uniquely defines a probability density function fX(x).
The force of mortality
\mu(x)
This is expressed in symbols as
\mu(x)S(x)=fX(x)
or equivalently
\mu(x)=
fX(x) | |
S(x) |
.
In many instances, it is also desirable to determine the survival probability function when the force of mortality is known. To do this, integrate the force of mortality over the interval x to x + t
x+t | |
\int | |
x |
\mu(y)dy=
x+t | ||
\int | - | |
x |
d | |
dy |
ln[S(y)]dy
By the fundamental theorem of calculus, this is simply
x+t | |
-\int | |
x |
\mu(y)dy=ln[S(x+t)]-ln[S(x)].
Let us denote
Sx(t)=
S(x+t) | |
S(x) |
,
then taking the exponent to the base e, the survival probability of an individual of age x in terms of the force of mortality is
Sx(t)=\exp
x+t | |
\left(-\int | |
x |
\mu(y)dy\right).
\mu(y)=λ,
then the survival function is
Sx(t)=
| ||||||||||
e |
=e-λ,
is the exponential distribution.
\mu(y)=
y\alpha-1e-y | |
\Gamma(\alpha)-\gamma(\alpha,y) |
,
where γ(α,y) is the lower incomplete gamma function, the probability density function that of Gamma distribution
f(x)=
x\alphae-x | |
\Gamma(\alpha) |
.
\mu(y)=\alphaλ\alphay\alpha-1,
where α ≥ 0, we have
x+t | |
\int | |
x |
\mu(y)dy=\alphaλ\alpha
x+t | |
\int | |
x |
y\alpha-1dy=λ\alpha((x+t)\alpha-x\alpha).
Thus, the survival function is
Sx(t)=
| ||||||||||
e |
=A(x)
-(λ(x+t))\alpha | |
e |
,
where
A(x)=
(λx)\alpha | |
e |
.
\mu(y)=A+Bcy fory\geqslant0.
Using the last formula, we have
x+t | |
\int | |
x |
(A+Bcy)dy=At+B(cx+t-cx)/ln[c].
Then
Sx(t)=
-(At+B(cx+t-cx)/ln[c]) | |
e |
=e-At
cx(ct-1) | |
g |
where
g=e-B/ln[c].