In mathematics, particularly abstract algebra, a binary operation • on a set is flexible if it satisfies the flexible identity:
a\bullet\left(b\bulleta\right)=\left(a\bulletb\right)\bulleta
Every commutative or associative operation is flexible, so flexibility becomes important for binary operations that are neither commutative nor associative, e.g. for the multiplication of sedenions, which are not even alternative.
In 1954, Richard D. Schafer examined the algebras generated by the Cayley–Dickson process over a field and showed that they satisfy the flexible identity.[1]
Besides associative algebras, the following classes of nonassociative algebras are flexible:
Similarly, the following classes of nonassociative magmas are flexible:
The sedenions, and all algebras constructed from these by iterating the Cayley–Dickson construction, are also flexible.