In applied mathematics and the calculus of variations, the first variation of a functional J(y) is defined as the linear functional
\deltaJ(y)
\deltaJ(y,h)=\lim\varepsilon\to
J(y+\varepsilonh)-J(y) | |
\varepsilon |
=\left.
d | |
d\varepsilon |
J(y+\varepsilonh)\right|\varepsilon,
where y and h are functions, and ε is a scalar. This is recognizable as the Gateaux derivative of the functional.
Compute the first variation of
b | |
J(y)=\int | |
a |
yy'dx.
From the definition above,
\begin{align} \deltaJ(y,h)&=\left.
d | |
d\varepsilon |
J(y+\varepsilonh)\right|\varepsilon\\ &=\left.
d | |
d\varepsilon |
b | |
\int | |
a |
(y+\varepsilonh)(y\prime+\varepsilonh\prime) dx\right|\varepsilon\\ &=\left.
d | |
d\varepsilon |
b | |
\int | |
a |
(yy\prime+y\varepsilonh\prime+y\prime\varepsilonh+\varepsilon2hh\prime) dx\right|\varepsilon\\ &=
b | |
\left.\int | |
a |
d | |
d\varepsilon |
(yy\prime+y\varepsilonh\prime+y\prime\varepsilonh+\varepsilon2hh\prime) dx\right|\varepsilon\\ &=
b | |
\left.\int | |
a |
(yh\prime+y\primeh+2\varepsilonhh\prime) dx\right|\varepsilon\\ &=
b | |
\int | |
a |
(yh\prime+y\primeh) dx \end{align}