Order (group theory) explained

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that, where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite.

The order of a group is denoted by or, and the order of an element is denoted by or, instead of

\operatorname{ord}(\langlea\rangle),

where the brackets denote the generated group.

Lagrange's theorem states that for any subgroup of a finite group, the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of .

Example

The symmetric group S3 has the following multiplication table.

e s t u v w
ee s t u v w
ss e v w t u
tt u e s w v
uu t w v e s
vv w s e u t
ww v u t s e

This group has six elements, so . By definition, the order of the identity,, is one, since . Each of,, and squares to, so these group elements have order two: . Finally, and have order 3, since, and .

Order and structure

The order of a group G and the orders of its elements give much information about the structure of the group. Roughly speaking, the more complicated the factorization of |G|, the more complicated the structure of G.

ab=(ab)-1=b-1a-1=ba

. The converse is not true; for example, the (additive) cyclic group Z6 of integers modulo 6 is abelian, but the number 2 has order 3:

2+2+2=6\equiv0\pmod{6}

.

The relationship between the two concepts of order is the following: if we write

\langlea\rangle=\{ak\colonk\inZ\}

for the subgroup generated by a, then

\operatorname{ord}(a)=\operatorname{ord}(\langlea\rangle).

For any integer k, we have

ak = e   if and only if   ord(a) divides k.

In general, the order of any subgroup of G divides the order of G. More precisely: if H is a subgroup of G, then

ord(G) / ord(H) = [''G'' : ''H''], where [''G'' : ''H''] is called the index of H in G, an integer. This is Lagrange's theorem. (This is, however, only true when G has finite order. If ord(G) = ∞, the quotient ord(G) / ord(H) does not make sense.)

As an immediate consequence of the above, we see that the order of every element of a group divides the order of the group. For example, in the symmetric group shown above, where ord(S3) = 6, the possible orders of the elements are 1, 2, 3 or 6.

The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem). The statement does not hold for composite orders, e.g. the Klein four-group does not have an element of order four. This can be shown by inductive proof.[1] The consequences of the theorem include: the order of a group G is a power of a prime p if and only if ord(a) is some power of p for every a in G.[2]

If a has infinite order, then all non-zero powers of a have infinite order as well. If a has finite order, we have the following formula for the order of the powers of a:

ord(ak) = ord(a) / gcd(ord(a), k)[3] for every integer k. In particular, a and its inverse a−1 have the same order.

In any group,

\operatorname{ord}(ab)=\operatorname{ord}(ba)

There is no general formula relating the order of a product ab to the orders of a and b. In fact, it is possible that both a and b have finite order while ab has infinite order, or that both a and b have infinite order while ab has finite order. An example of the former is a(x) = 2−x, b(x) = 1−x with ab(x) = x−1 in the group

Sym(Z)

. An example of the latter is a(x) = x+1, b(x) = x−1 with ab(x) = x. If ab = ba, we can at least say that ord(ab) divides lcm(ord(a), ord(b)). As a consequence, one can prove that in a finite abelian group, if m denotes the maximum of all the orders of the group's elements, then every element's order divides m.

Counting by order of elements

Suppose G is a finite group of order n, and d is a divisor of n. The number of order d elements in G is a multiple of φ(d) (possibly zero), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example, in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d = 6, since φ(6) = 2, and there are zero elements of order 6 in S3.

In relation to homomorphisms

Group homomorphisms tend to reduce the orders of elements: if fG → H is a homomorphism, and a is an element of G of finite order, then ord(f(a)) divides ord(a). If f is injective, then ord(f(a)) = ord(a). This can often be used to prove that there are no homomorphisms or no injective homomorphisms, between two explicitly given groups. (For example, there can be no nontrivial homomorphism h: S3 → Z5, because every number except zero in Z5 has order 5, which does not divide the orders 1, 2, and 3 of elements in S3.) A further consequence is that conjugate elements have the same order.

Class equation

An important result about orders is the class equation; it relates the order of a finite group G to the order of its center Z(G) and the sizes of its non-trivial conjugacy classes:

|G|=|Z(G)|+\sumidi

where the di are the sizes of the non-trivial conjugacy classes; these are proper divisors of |G| bigger than one, and they are also equal to the indices of the centralizers in G of the representatives of the non-trivial conjugacy classes. For example, the center of S3 is just the trivial group with the single element e, and the equation reads |S3| = 1+2+3.

See also

References

Notes and References

  1. Web site: Proof of Cauchy's Theorem. Keith. Conrad. PDF. May 14, 2011. dead. https://web.archive.org/web/20181123110229/http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchypf.pdf. 2018-11-23.
  2. Web site: Consequences of Cauchy's Theorem. Keith. Conrad. PDF. May 14, 2011. dead. https://web.archive.org/web/20180712201823/http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchyapp.pdf. 2018-07-12.
  3. Dummit, David; Foote, Richard. Abstract Algebra,, pp. 57