In mathematics, a filter on a set
X
l{B}
X\inl{B}
\emptyset\notinl{B}
A\inl{B}
B\inl{B}
A\capB\inl{B}
A\subsetB\subsetX
A\inl{B}
B\inl{B}
A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
Filters were introduced by Henri Cartan in 1937 and as described in the article dedicated to filters in topology, they were subsequently used by Nicolas Bourbaki in their book Topologie Générale as an alternative to the related notion of a net developed in 1922 by E. H. Moore and Herman L. Smith. Order filters are generalizations of filters from sets to arbitrary partially ordered sets. Specifically, a filter on a set is just a proper order filter in the special case where the partially ordered set consists of the power set ordered by set inclusion.
In this article, upper case Roman letters like
S
X
\wp(X)
X.
\wp(X).
l{B},l{C},andl{F}.
X
l{B},l{F},
X.
The terms "prefilter" and "filter base" are synonyms and will be used interchangeably.
Warning about competing definitions and notation
There are unfortunately several terms in the theory of filters that are defined differently by different authors. These include some of the most important terms such as "filter". While different definitions of the same term usually have significant overlap, due to the very technical nature of filters (and point–set topology), these differences in definitions nevertheless often have important consequences. When reading mathematical literature, it is recommended that readers check how the terminology related to filters is defined by the author. For this reason, this article will clearly state all definitions as they are used. Unfortunately, not all notation related to filters is well established and some notation varies greatly across the literature (for example, the notation for the set of all prefilters on a set) so in such cases this article uses whatever notation is most self describing or easily remembered.
The theory of filters and prefilters is well developed and has a plethora of definitions and notations, many of which are now unceremoniously listed to prevent this article from becoming prolix and to allow for the easy look up of notation and definitions. Their important properties are described later.
Sets operations
The or in
X
l{B}\subseteq\wp(X)
and similarly the of
l{B}
l{B}\downarrow:=\{S\subseteqB~:~B\inl{B}\}=cupB
Notation and Definition | Name | |
---|---|---|
\kerl{B}=capB | of l{B} | |
S\setminusl{B}:=\{S\setminusB~:~B\inl{B}\}=\{S\}(\setminus)l{B} | where S | |
l{B}\vertS:=\{B\capS~:~B\inl{B}\}=l{B}(\cap)\{S\} | or where S l{B}\capS | |
l{B}(\cap)l{C}=\{B\capC~:~B\inl{B}andC\inl{C}\} | ( l{B}\capl{C} | |
l{B}(\cup)l{C}=\{B\cupC~:~B\inl{B}andC\inl{C}\} | ( l{B}\cupl{C} | |
l{B}(\setminus)l{C}=\{B\setminusC~:~B\inl{B}andC\inl{C}\} | ( l{B}\setminusl{C} | |
l{B}\#=l{B}\#=\{S\subseteqX~:~S\capB ≠ \varnothingforallB\inl{B}\} | ||
\wp(X)=\{S~:~S\subseteqX\} | of a set X |
Throughout,
f
S
Notation and Definition | Name | |
---|---|---|
f-1(l{B})=\left\{f-1(B)~:~B\inl{B}\right\} | of l{B}underf-1, l{B} f | |
f-1(S)=\{x\in\operatorname{domain}f~:~f(x)\inS\} | of Sunderf-1, Sunderf | |
f(l{B})=\{f(B)~:~B\inl{B}\} | of l{B} f | |
f(S)=\{f(s)~:~s\inS\cap\operatorname{domain}f\} | of Sunderf | |
\operatorname{image}f=f(\operatorname{domain}f) | (or range) of f |
Nets and their tails
A is a set
I
\leq
(I,\leq)
i,j\inI,
k\inI
i\leqkandj\leqk.
iandj,
j\geqi
i\leqj
i<j
i\leqj
j\leqi
\leq
i\leqjandi ≠ j
A is a map from a non–empty directed set into
X.
x\bull=\left(xi\right)i
I.
Notation and Definition | Name | |
---|---|---|
I\geq=\{j\inI~:~j\geqi\} | or where (I,\leq) | |
x\geq=\left\{xj~:~j\geqiandj\inI\right\} | or | |
\operatorname{Tails}\left(x\bull\right)=\left\{x\geq~:~i\inI\right\} | or / of x\bull. x\bull=\left(xi\right)i. x\bull \operatorname{Tails}\left(x\bull\right) | |
\operatorname{TailsFilter}\left(x\bull\right)=\operatorname{Tails}\left(x\bull\right)\uparrow | of/generated by (tails of) x\bull=\left(xi\right)i | |
f\left(I\geq\right)=\{f(j)~:~j\geqiandj\inI\} | or where (I,\leq) |
Warning about using strict comparison
If
x\bull=\left(xi\right)i
i\inI
x>=\left\{xj~:~j>iandj\inI\right\},
i
I
\left\{x>~:~i\inI\right\}
\operatorname{Tails}\left(x\bull\right)
\left\{x\geq~:~i\inI\right\}
\left\{x>~:~i\inI\right\}
\left\{x>~:~i\inI\right\}\cup\left\{x\geq~:~i\inI\right\}
<
\leq.
See also: Filter (mathematics).
The following is a list of properties that a family
l{B}
l{B}\subseteq\wp(X).
Many of the properties of
l{B}
X,
X
X,
X,
X
X
There are no prefilters on
X=\varnothing
\varnothing
X ≠ \varnothing
Named examples
l{B}=\{X\}
X
X
X.
\wp(X)
X
X.
(X,\tau)
x\inX,
l{N}(x)
x
X.
l{B}\subseteq\wp(X)
xfor(X,\tau)
l{B}
l{B}
X
l{B}
l{N}(x).
\tau(x)\subseteql{N}(x)
l{N}(x).
l{N}(x)and\tau(x)
X,
\tau(x)
\tau.
S\subseteqX.
l{B}
l{B}=\operatorname{Tails}\left(x\bull\right)
x\bull=\left(xi\right)
infty | |
i=1 |
inX.
l{B}
X
l{B}
X
l{F}
X
X
l{F}
X
l{F}
X
X.
X
l{F}
\wp(X),
X
\{X\setminus\{x\}~:~x\inX\}
X.
X
\{X\setminus\{x\}~:~x\inX\},
X
\kerl{F}=\varnothing.
F\subseteq\operatorname{Filters}(X)
X
Fin\operatorname{Filters}(X),
wedgel{F\inF
\kerF=capl{F\inF
X
\{X\}
\subseteqand\leq
F.
l{B}andl{F}
\operatorname{Filters}(X)
l{B}(\cup)l{F}.
l{B}andl{F}
l{B}(\cup)l{F}
\leq
l{B}andl{F}
l{B}(\cup)l{F}\leql{B}andl{B}(\cup)l{F}\leql{F}
l{S}
l{S}\leql{B}andl{S}\leql{F}
l{S}\leql{B}(\cup)l{F}.
l{B}andl{F}
S:=\{l{S}\subseteq\wp(X)~:~l{S}\leql{B}andl{S}\leql{F}\}
l{B}(\cup)l{F}\inS
l{B}(\cup)l{F}
\leq
S.
\varnothing ≠ F\subseteq\operatorname{DualIdeals}(X)
\cupF=cupl{F\inF
Fin\operatorname{DualIdeals}(X),
veel{F\inF
\subseteq
X
F
\subseteq
X
\cupF
veel{F\inF
\pi\left(\cupF\right):=\left\{F1\cap … \capFn~:~n\in\NandeveryFibelongstosomel{F}\inF\right\}
\cupF.
\cupF
X
veel{F\inF
X,
\subseteq
X
F
F\subseteq\operatorname{Filters}(X).
\varnothing ≠ F\subseteq\operatorname{Filters}(X)
\cupF=cupl{F\inF
Fin\operatorname{Filters}(X),
veel{F\inF
\subseteq
X
F
veel{F\inF
veel{F\inF
X
\cupF.
Fin\operatorname{Filters}(X)
\pi\left(\cupF\right)\uparrow
X.
F
X
l{B}andl{C}onX
l{F}onX
l{B}andl{C}.
\cupF
Fin\operatorname{Filters}(X)
\operatorname{Prefilters}(X)
X
\wp(X)
l{B}andl{F}
X
l{B}(\cap)l{F}
l{B}andl{F}
X
\leq
\leq
l{B}andl{F};
l{S}
l{B}\leql{S}andl{F}\leql{S}
l{B}(\cap)l{F}\leql{S},
l{B}\veel{F}.
IandX
i\inI
l{D}i
X.
l{I}
I
cup\Xi
X
\kappa.
\kappa
Other examples
X=\{p,1,2,3\}
l{B}=\{\{p\},\{p,1,2\},\{p,1,3\}\},
l{B}
l{B}
l{B}
l{B}.
l{B}
\{\{p,1\}\}\cupl{B}.
l{B}
l{B}.
X
l{B}
l{B}\uparrow=\{S\subseteqX:p\inS\}=\{\{p\}\cupT~:~T\subseteq\{1,2,3\}\}.
l{B},
l{B}
l{B}\uparrow
p;l{B}\uparrow
X.
(X,\tau)
l{B}\subseteq\wp(X),
\overline{l{B}}:=\left\{\operatorname{cl}XB~:~B\inl{B}\right\},
l{B}
\overline{l{B}}.
l{B}
\overline{l{B}}.
l{B}
X
\overline{l{B}}
X
\left(\overline{l{B}}\right)\uparrow
X
\overline{l{B}}.
l{B}
X
l{B}.
X=\Rn
1\leqn\in\N
l{B}\operatorname{LebFinite
B\inl{B}
B
l{B}.
l{B}\operatorname{LebFinite
l{B}
X.
l{B}\operatorname{LebFinite
\R.
X
l{B}\operatorname{LebFinite
X
l{B}\operatorname{LebFinite
l{B}\operatorname{LebFinite
\subseteq-
l{S}
S1\cap … \capSn
n
l{S}
n
\pi(l{S})
l{S}=\{(-infty,r)\cup(r,infty)~:~r\in\R\}
l{S}R
l{S}R
Br,s,
rands
For all
r,s\in\R,
Br,s=Bmin(r,s),s
r\leqs.
r\leqsandu\leqv,
sorv
B-r,s\capB-u,v=B-min(r,u),max(s,v).
R
Let
X=\R
\varnothing ≠ R\subseteq(0,infty)
l{S}R
l{B}R=\pi\left(l{S}R\right)
\uparrowX | |
l{B} | |
R |
X=\R
l{S}R.
\uparrowX | |
l{S} | |
R |
X
\uparrowX | |
l{S} | |
R |
\uparrowX | |
l{B} | |
R |
.
R,S\subseteq(0,infty)
l{S}Randl{S}S
X
R=S.
If
l{C}
l{S}(0,infty)\subseteql{C}\subseteql{B}(0,infty)
C\inl{C}\setminusl{S}(0,infty),
l{C}\setminus\{C\}
l{S}(0,infty)\subseteql{C}\setminus\{C\}\subseteql{B}(0,infty).
\subseteq
l{S}(0,infty)
l{S}(0,.
l{B}(0,infty)=\pi\left(l{S}(0,infty)\right)
\subseteq
l{S}(0,infty).
See main article: Ultrafilter (set theory) and Ultrafilter.
There are many other characterizations of "ultrafilter" and "ultra prefilter," which are listed in the article on ultrafilters. Important properties of ultrafilters are also described in that article.
Any non–degenerate family that has a singleton set as an element is ultra, in which case it will then be an ultra prefilter if and only if it also has the finite intersection property. The trivial filter
\{X\}onX
X
The ultrafilter lemma
The following important theorem is due to Alfred Tarski (1930).
A consequence of the ultrafilter lemma is that every filter is equal to the intersection of all ultrafilters containing it.[4] Assuming the axioms of Zermelo–Fraenkel (ZF), the ultrafilter lemma follows from the Axiom of choice (in particular from Zorn's lemma) but is strictly weaker than it. The ultrafilter lemma implies the Axiom of choice for finite sets. If dealing with Hausdorff spaces, then most basic results (as encountered in introductory courses) in Topology (such as Tychonoff's theorem for compact Hausdorff spaces and the Alexander subbase theorem) and in functional analysis (such as the Hahn–Banach theorem) can be proven using only the ultrafilter lemma; the full strength of the axiom of choice might not be needed.
The kernel is useful in classifying properties of prefilters and other families of sets.
If
l{B}\subseteq\wp(X)
x,x\not\in\kerl{B}ifandonlyifX\setminus\{x\}\inl{B}\uparrow.
Properties of kernels
If
l{B}\subseteq\wp(X)
\ker\left(l{B}\uparrow\right)=\kerl{B}
l{B}.
l{B}
(1)
l{B},
l{B},
l{B}.
If
f
f(\kerl{B})\subseteq\kerf(l{B})
f-1(\kerl{B})=\kerf-1(l{B}).
l{B}\leql{C}
\kerl{C}\subseteq\kerl{B}
l{B}
l{C}
\kerl{B}=\kerl{C}.
l{B}
l{C}
\kerl{B}=\kerl{C}.
If
l{B}
X
\varnothing ≠ \kerl{B}\inl{B}
\{\kerl{B}\}
l{B}.
Family of examples: For any non–empty
C\subseteq\R,
l{B}C=\{\R\setminus(r+C)~:~r\in\R\}
\left(r1+C\right)\cup … \cup\left(rn+C\right)
\R,
l{B}C
C
C=\Q,\Z,
\R,
\R.
C
l{B}C
\R.
For every filter
l{F}onX
l{F}*andl{F}\bullonX
l{F}*
l{F}\bull
l{F}*\wedgel{F}\bull=l{F},
l{F}*andl{F}\bull
l{F}*\veel{F}\bull=\wp(X)
l{F}*
l{F}
l{F}\bull
l{F}
l{F}\bull:=l{F}andl{F}*:=\wp(X);
l{F}\bull:=\{\kerl{F}\}\uparrow
l{F}*:=l{F}\vee\{X\setminus\left(\kerl{F}\right)\}\uparrow
Finite prefilters and finite sets
If a filter subbase
l{B}
\kerl{B}=capB
l{B}
If
X
l{B}\subseteq\wp(X).
X,
X
The trivial filter
\{X\}
X
X
X
X
X
\{X\}
\wp(X)
\{X\}
l{F}\supseteql{B}
l{F}\subseteq\wp(Y)andX\subseteqY
Y
If a family of sets
l{B}
\kerl{B} ≠ \varnothing
l{B}
l{B}
l{B}
l{B}
\kerl{B}
Every filter on
X
X
X
The next theorem shows that every ultrafilter falls into one of two categories: either it is free or else it is a principal filter generated by a single point.
The preorder
\leq
l{F}\geql{C}
l{F}
l{C}
l{B}
l{C},
\leq,
Two families of sets
l{B}andl{C}
l{B}\#l{C},
B\capC ≠ \varnothingforallB\inl{B}andC\inl{C}.
l{B}andl{C}
S\subseteqXandl{B}\subseteq\wp(X)
l{B}andS
l{B}and\{S\}
l{B}onS,
l{B}toS.
Example: If
x | |
i\bull |
=
\left(x | |
in |
infty | |
\right) | |
n=1 |
x\bull=\left(xi\right)
infty | |
i=1 |
\operatorname{Tails}\left(x | |
i\bull |
\right)
\operatorname{Tails}\left(x\bull\right);
\operatorname{Tails}\left(x | |
i\bull |
\right)\vdash\operatorname{Tails}\left(x\bull\right)
\operatorname{Tails}\left(x\bull\right)\leq
\operatorname{Tails}\left(x | |
i\bull |
\right).
C:=x\geq\in\operatorname{Tails}\left(x\bull\right)
i\in\N
F:=
x | |
i\geq |
\in
\operatorname{Tails}\left(x | |
i\bull |
\right).
x\geq=\left\{xi,xi+1,\ldots\right\}
x | |
i\geq |
=
\left\{x | |
in |
,
x | |
in+1 |
,\ldots\right\},
i\leqin.
i1<i2< …
n\in\N
in\geqi,
x\geq\supseteq
x | |
i\geq |
\operatorname{TailsFilter}\left(x\bull\right)\subseteq
\operatorname{TailsFilter}\left(x | |
i\bull |
\right).
x\bull
x\bull:\N\toX
x | |
i\bull |
\left(x2,x4,x6,\ldots\right)
x | |
i\geq |
=\left\{x2n,x2n,x2n,\ldots\right\}
n\in\N
For another example, if
l{B}
\varnothing\leql{B}\leql{B}\leq\{\varnothing\}
\{\varnothing\}\leql{B}ifandonlyif\varnothing\inl{B}.
Assume that
l{C}andl{F}
l{B}\leql{F}andl{C}\leql{F}.
\kerl{F}\subseteq\kerl{C},
l{C} ≠ \varnothingimpliesl{F} ≠ \varnothing,
\varnothing\inl{C}implies\varnothing\inl{F}.
l{C}\leql{F},l{F}
l{C} ≠ \varnothing,
l{C}
l{C}andl{F}
\varnothing ≠ l{B}\leql{F}and\varnothing ≠ l{C}\leql{F}
l{F}
l{B}andl{C}
If
l{C}andl{F}
l{C}\leql{F},
l{C}
\varnothing\not\inl{F},
l{F}
l{C}
l{C}
l{C}\uparrow
l{B}
l{B}
S\subseteqXandl{B}\subseteq\wp(X)
X
S\not\inl{B}ifandonlyif(X\setminusS)\#l{B}.
Relational properties of subordination
The relation
\leq
\wp(\wp(X)).
\leqon\operatorname{Filters}(X)
X
For any
l{B}\subseteq\wp(X),l{B}\leq\{X\}ifandonlyif\{X\}=l{B}.
X
\leqon\operatorname{Filters}(X)
If
l{B}\subseteql{C}thenl{B}\leql{C}
l{C}
l{C}
\leq
\operatorname{Filters}(X)
\leq
\operatorname{Prefilters}(X)
\wp(\wp(X))
l{C}\leql{B}andl{B}\leql{C}
l{B}=l{C}
l{C}andl{B}
l{B}
l{B}\leql{B}\uparrowandl{B}\uparrow\leql{B}butl{B} ≠ l{B}\uparrow.
The preorder
\leq
\wp(\wp(X)),
l{B},l{C}\in\wp(\wp(X)),
l{B}
l{C}
l{C}\leql{B}andl{B}\leql{C}.
l{C}andl{B}
Two upward closed (in
X
\wp(X)
l{B}\subseteq\wp(X)
\varnothing\leql{B}\leq\wp(X)
l{B}
l{B}\uparrow.
\{\varnothing\}
X.
Properties preserved between equivalent families
Let
l{B},l{C}\in\wp(\wp(X))
l{F}
l{B}andl{C}
\kerl{B}=\kerl{C}
l{B}andl{C}
l{B}andl{C}
\varnothing
l{B}andl{C}
X
X
\{X\}
\wp(X)
l{F}
l{F}
l{F}
l{F}
Missing from the above list is the word "filter" because this property is preserved by equivalence. However, if
l{B}andl{C}
X,
Equivalence of prefilters and filter subbases
If
l{B}
X
l{B}
l{B}
X
l{B}
X
X
In particular, every prefilter is equivalent to the filter that it generates. By transitivity, two prefilters are equivalent if and only if they generate the same filter.[6] Every prefilter is equivalent to exactly one filter on
X,
A filter subbase that is also a prefilter can be equivalent to the prefilter (or filter) that it generates. In contrast, every prefilter is equivalent to the filter that it generates. This is why prefilters can, by and large, be used interchangeably with the filters that they generate while filter subbases cannot. Every filter is both a –system and a ring of sets.
Examples of determining equivalence/non–equivalence
Examples: Let
X=\R
E
\Z
\N
l{B}andl{C}
B\inl{B}andC\inl{C}.
l{B}\leql{F}
l{C}\leql{F}
F,G\inl{F}suchthatF\subseteqBandG\subseteqC
F\capG ≠ \varnothing
\varnothing ≠ G\capF\subseteqB\capC.\blacksquare
l{F}
\varnothing ≠ l{C}\leql{F},
l{B}:=l{F}
l{C}andl{F}mesh.\blacksquare
C1,\ldots,Cn\inl{C}
F1,\ldots,Fn\inl{F}
Fi\subseteqCi
\varnothing ≠ F1\cap … Fn\subseteqC1\cap … Cn.
l{C}
\blacksquare
l{C}andl{F}
X
l{C}\leql{F}ifandonlyifl{C}\uparrow\subseteql{F}\uparrow.