b
Let
n
b>1
n
\operatorname{SFD}b:N → N
\operatorname{SFD}b(n)=
k-1 | |
\sum | |
i=0 |
di!.
k=\lfloorlogbn\rfloor+1
b
n!
n
di=
n\bmod{bi+1 | |
- |
n\bmod{bi
i
n
b
\operatorname{SFD}b
\operatorname{SFD}b(n)=n
1
2
b
b
For example, the number 145 in base
b=10
145=1!+4!+5!
For
b=2
k
0!=1!=1
A natural number
n
\operatorname{SFD}b
k(n) | |
\operatorname{SFD} | |
b |
=n
k
k
k=1
k=2
All natural numbers
n
\operatorname{SFD}b
b
k
bk-1\leqn\leq(b-1)!(k)
k\geqb
bk-1>(b-1)!(k)
b>2
n
n>\operatorname{SFD}b(n)
n<bb
bb
bb
b=2
k\leqn
b
The number of iterations
i
i(n) | |
\operatorname{SFD} | |
b |
\operatorname{SFD}b
n
Let
k
b=(k-1)!
n1=kb+1
\operatorname{SFD}b
k.
n2=kb+2
\operatorname{SFD}b
k
4 | 41 | 42 | ||
5 | 24 | 51 | 52 | |
6 | 120 | 61 | 62 | |
7 | 720 | 71 | 72 |
Let
k
b=k!-k+1
n1=b+k
\operatorname{SFD}b
k
3 | 13 | ||
4 | 21 | 14 | |
5 | 116 | 15 | |
6 | 715 | 16 |
All numbers are represented in base
b
Base b | Nontrivial factorion ( n ≠ 1 n ≠ 2 | Cycles | |||
2 | \varnothing | \varnothing | |||
3 | \varnothing | \varnothing | |||
4 | 13 | 3 → 12 → 3 | |||
5 | 144 | \varnothing | |||
6 | 41, 42 | \varnothing | |||
7 | \varnothing | 36 → 2055 → 465 → 2343 → 53 → 240 → 36 | |||
8 | \varnothing | 3 → 6 → 1320 → 12 175 → 12051 → 175 | |||
9 | 62558 | ||||
10 | 145, 40585 | 871 → 45361 → 871 872 → 45362 → 872 |