External sorting is a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory, usually a disk drive. Thus, external sorting algorithms are external memory algorithms and thus applicable in the external memory model of computation.
External sorting algorithms generally fall into two types, distribution sorting, which resembles quicksort, and external merge sort, which resembles merge sort. External merge sort typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary file. In the merge phase, the sorted subfiles are combined into a single larger file.
See also: External memory model. External sorting algorithms can be analyzed in the external memory model. In this model, a cache or internal memory of size and an unbounded external memory are divided into blocks of size, and the running time of an algorithm is determined by the number of memory transfers between internal and external memory. Like their cache-oblivious counterparts, asymptotically optimal external sorting algorithms achieve a running time (in Big O notation) of
O\left(\tfrac{N}{B}log\tfrac{M{B}}\tfrac{N}{B}\right)
One example of external sorting is the external merge sort algorithm, which uses a K-way merge algorithm. It sorts chunks that each fit in RAM, then merges the sorted chunks together.[1] [2]
The algorithm first sorts items at a time and puts the sorted lists back into external memory. It does a \tfrac{M}{B}
For example, for sorting 900 megabytes of data using only 100 megabytes of RAM:
The merge pass is key to making external merge sort work externally. The merge algorithm only makes one pass through each chunk, so chunks do not have to be loaded all at once; rather, sequential parts of the chunk are loaded as needed. And as long as the blocks read are relatively large (like the 10 MB in this example), the reads can be relatively efficient even on media with low random-read performance, like hard drives.
Historically, instead of a sort, sometimes a replacement-selection algorithm[3] was used to perform the initial distribution, to produce on average half as many output chunks of double the length.
The previous example is a two-pass sort: first sort, then merge. The sort ends with a single k-way merge, rather than a series of two-way merge passes as in a typical in-memory merge sort. This is because each merge pass reads and writes every value from and to disk, so reducing the number of passes more than compensates for the additional cost of a k-way merge.
The limitation to single-pass merging is that as the number of chunks increases, memory will be divided into more buffers, so each buffer is smaller. Eventually, the reads become so small that more time is spent on disk seeks than data transfer. A typical magnetic hard disk drive might have a 10 ms access time and 100 MB/s data transfer rate, so each seek takes as much time as transferring 1 MB of data.
Thus, for sorting, say, 50 GB in 100 MB of RAM, using a single 500-way merge pass isn't efficient: we can only read 100 MB / 501 ≈ 200 KB from each chunk at once, so 5/6 of the disk's time is spent seeking. Using two merge passes solves the problem. Then the sorting process might look like this:
Although this requires an additional pass over the data, each read is now 4 MB long, so only 1/5 of the disk's time is spent seeking. The improvement in data transfer efficiency during the merge passes (16.6% to 80% is almost a 5× improvement) more than makes up for the doubled number of merge passes.
Variations include using an intermediate medium like solid-state disk for some stages; the fast temporary storage needn't be big enough to hold the whole dataset, just substantially larger than available main memory. Repeating the example above with 1 GB of temporary SSD storage, the first pass could merge 10×100 MB sorted chunks read from that temporary space to write 50x1 GB sorted chunks to HDD. The high bandwidth and random-read throughput of SSDs help speed the first pass, and the HDD reads for the second pass can then be 2 MB, large enough that seeks will not take up most of the read time. SSDs can also be used as read buffers in a merge phase, allowing fewer larger reads (20MB reads in this example) from HDD storage. Given the lower cost of SSD capacity relative to RAM, SSDs can be an economical tool for sorting large inputs with very limited memory.
Like in-memory sorts, efficient external sorts require O(n log n) time: exponentially growing datasets require linearly increasing numbers of passes that each take O(n) time.[4] Under reasonable assumptions at least 500 GB of data stored on a hard drive can be sorted using 1 GB of main memory before a third pass becomes advantageous, and many times that much data can be sorted before a fourth pass becomes useful.[5]
Main memory size is important. Doubling memory dedicated to sorting halves the number of chunks and the number of reads per chunk, reducing the number of seeks required by about three-quarters. The ratio of RAM to disk storage on servers often makes it convenient to do huge sorts on a cluster of machines[6] rather than on one machine with multiple passes. Media with high random-read performance like solid-state drives (SSDs) also increase the amount that can be sorted before additional passes improve performance.
External distribution sort is analogous to quicksort. The algorithm finds approximately
\tfrac{M}{B}
O(1)
However, finding exactly
\tfrac{M}{B}
\tfrac{N}{M}
\sqrt{\tfrac{M}{16B}}
\sqrt{\tfrac{M}{B}}
There is a duality, or fundamental similarity, between merge- and distribution-based algorithms.[8]
The Sort Benchmark, created by computer scientist Jim Gray, compares external sorting algorithms implemented using finely tuned hardware and software. Winning implementations use several techniques: