External ray explained
An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set.[1] Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.
External rays are used in complex analysis, particularly in complex dynamics and geometric function theory.
History
External rays were introduced in Douady and Hubbard's study of the Mandelbrot set
Types
Criteria for classification :
- plane : parameter or dynamic
- map
- bifurcation of dynamic rays
- Stretching
- landing[2]
plane
External rays of (connected) Julia sets on dynamical plane are often called dynamic rays.
External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays.
bifurcation
Dynamic ray can be:
- bifurcated = branched[3] = broken [4]
- smooth = unbranched = unbroken
When the filled Julia set is connected, there are no branching external rays. When the Julia set is not connected then some external rays branch.[5]
stretching
Stretching rays were introduced by Branner and Hubbard:[6] [7]
"The notion of stretching rays is a generalization of that of external rays for the Mandelbrot set to higher degree polynomials."[8]
landing
Every rational parameter ray of the Mandelbrot set lands at a single parameter.[9] [10]
Maps
Polynomials
Dynamical plane = z-plane
External rays are associated to a compact, full, connected subset
of the
complex plane as :
- the images of radial rays under the Riemann map of the complement of
External rays together with equipotential lines of Douady-Hubbard potential (level sets) form a new polar coordinate system for exterior (complement) of
.
In other words the external rays define vertical foliation which is orthogonal to horizontal foliation defined by the level sets of potential.[13]
Uniformization
Let
be the
conformal isomorphism from the
complement (exterior) of the
closed unit disk
} to the complement of the
filled Julia set
.
\Psic:\hat{\Complex}\setminus\overline{D
} \to \hat \setminus K_c
where
denotes the
extended complex plane.Let
denote the
Boettcher map.
[14]
is a
uniformizing map of the basin of attraction of infinity, because it conjugates
on the complement of the filled Julia set
to
on the complement of the unit disk:
\begin{align}
\Phic:\hat{\Complex}\setminusKc&\to\hat{\Complex}\setminus\overline{D
}\\ z & \mapsto \lim_ (f_c^n(z))^\end
and
A value
is called the
Boettcher coordinate for a point
z\in\hat{\Complex}\setminusKc
.
Formal definition of dynamic ray
The external ray of angle
noted as
is:
of straight lines
l{R}\theta=\{\left(r ⋅ e2\pi\right): r>1\}
l{R}K\theta=\Psic(l{R}\theta)
- set of points of exterior of filled-in Julia set with the same external angle
=\{z\in\hat{\Complex}\setminusKc:\arg(\Phic(z))=\theta\}
=Properties
=
The external ray for a periodic angle
satisfies:
and its landing point[15]
satisfies:
f(\gammaf(\theta))=\gammaf(2\theta)
Parameter plane = c-plane
"Parameter rays are simply the curves that run perpendicular to the equipotential curves of the M-set."[16]
Uniformization
Let
be the mapping from the
complement (exterior) of the
closed unit disk
} to the complement of the
Mandelbrot set
.
[17]
}\setminus \overline\to\mathbb\setminus M
and Boettcher map (function)
, which is
uniformizing map
[18] of complement of Mandelbrot set, because it conjugates complement of the
Mandelbrot set
and the
complement (exterior) of the
closed unit disk
}\setminus M \to \mathbb\setminus \overline
it can be normalized so that :
[19] where :
} denotes the
extended complex planeJungreis function
is the inverse of
uniformizing map :
In the case of complex quadratic polynomial one can compute this map using Laurent series about infinity[20] [21]
c=\PsiM(w)=w+
bmw-m=w-
+
-
+
+...
where
}\setminus M
}\setminus \overline
Formal definition of parameter ray
The external ray of angle
is:
of straight lines
l{R}\theta=\{\left(r*e2\pi\right): r>1\}
l{R}M\theta=\PsiM(l{R}\theta)
- set of points of exterior of Mandelbrot set with the same external angle
[22]
}\setminus M : \arg(\Phi_M(c)) = \theta \}
Definition of the Boettcher map
Douady and Hubbard define:
\PhiM(c) \overset{\underset{def
}} \ \Phi_c(z=c)\,
so external angle of point
of parameter plane is equal to external angle of point
of dynamical plane
External angle
Angle is named external angle (argument).[23]
Principal value of external angles are measured in turns modulo 1
1 turn = 360 degrees = 2 × radians
Compare different types of angles :
| external angle | internal angle | plain angle |
---|
parameter plane |
|
|
|
---|
dynamic plane |
| |
|
---|
|
Computation of external argument
- argument of Böttcher coordinate as an external argument[24]
- kneading sequence as a binary expansion of external argument[25] [26] [27]
Transcendental maps
For transcendental maps (for example exponential) infinity is not a fixed point but an essential singularity and there is no Boettcher isomorphism.[28] [29]
Here dynamic ray is defined as a curve :
Images
Parameter rays
Mandelbrot set for complex quadratic polynomial with parameter rays of root points
Parameter space of the complex exponential family f(z)=exp(z)+c. Eight parameter rays landing at this parameter are drawn in black.
Programs that can draw external rays
See also
References
- Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer 1993
- Adrien Douady and John H. Hubbard, Etude dynamique des polynômes complexes, Prépublications mathémathiques d'Orsay 2/4 (1984 / 1985)
- John W. Milnor, Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account; Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque No. 261 (2000), 277–333. (First appeared as a Stony Brook IMS Preprint in 1999, available as arXiV:math.DS/9905169.)
- John Milnor, Dynamics in One Complex Variable, Third Edition, Princeton University Press, 2006,
- Wolf Jung : Homeomorphisms on Edges of the Mandelbrot Set. Ph.D. thesis of 2002
External links
Notes and References
- J. Kiwi : Rational rays and critical portraits of complex polynomials. Ph. D. Thesis SUNY at Stony Brook (1997); IMS Preprint #1997/15.
- 1406.3428 . 10.1007/s00222-015-0627-3 . Non-landing parameter rays of the multicorns . 2016 . Inou . Hiroyuki . Mukherjee . Sabyasachi . Inventiones Mathematicae . 204 . 3 . 869–893 . 2016InMat.204..869I . 253746781 .
- 10.1017/S0143385700006854 . Bifurcations of dynamic rays in complex polynomials of degree two . 1992 . Atela . Pau . Ergodic Theory and Dynamical Systems . 12 . 3 . 401–423 . 123478692 .
- 2009.02788 . Petersen . Carsten L. . Zakeri . Saeed . Periodic Points and Smooth Rays . 2020 . math.DS .
- https://orbit.dtu.dk/en/publications/holomorphic-dynamics-on-accumulation-of-stretching-rays Holomorphic Dynamics: On Accumulation of Stretching Rays by Pia B.N. Willumsen, see page 12
- http://pi.math.cornell.edu/~hubbard/IterationCubics1.pdf The iteration of cubic polynomials Part I : The global topology of parameter by BODIL BRANNER and JOHN H. HUBBARD
- https://www.youtube.com/watch?v=DyJDt4EyiBA&list=PL53AB2CAE70F31F2A&index=29 Stretching rays for cubic polynomials by Pascale Roesch
- Landing property of stretching rays for real cubic polynomials . 10.1090/s1088-4173-04-00102-x . 2004 . Komori . Yohei . Nakane . Shizuo . Conformal Geometry and Dynamics . 8 . 4 . 87–114 . 2004CGDAM...8...87K .
- https://web.archive.org/web/20160526222635/http://www.math.cornell.edu/~hubbard/OrsayFrench.pdf A. Douady, J. Hubbard: Etude dynamique des polynˆomes complexes. Publications math´ematiques d’Orsay 84-02 (1984) (premi`ere partie) and 85-04 (1985) (deuxi`eme partie).
- math/9711213 . Schleicher . Dierk . Rational parameter rays of the Mandelbrot set . 1997 .
- https://www.youtube.com/watch?v=N3ah6iTupIg&t=2652s Video : The beauty and complexity of the Mandelbrot set by John Hubbard (see part 3)
- http://qcpages.qc.cuny.edu/~yjiang/HomePageYJ/Download/2004MandLocConn.pdf Yunping Jing : Local connectivity of the Mandelbrot set at certain infinitely renormalizable points
- http://www.math.northwestern.edu/~demarco/basins.pdf POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM
- http://www.mndynamics.com/indexp.html How to draw external rays by Wolf Jung
- http://eprintweb.org/S/article/math/0609280 Tessellation and Lyubich-Minsky laminations associated with quadratic maps I: Pinching semiconjugacies Tomoki Kawahira
- http://linas.org/art-gallery/escape/phase/phase.html Douady Hubbard Parameter Rays by Linas Vepstas
- http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN001185500 John H. Ewing, Glenn Schober, The area of the Mandelbrot Set
- http://projecteuclid.org/euclid.dmj/1077304731 Irwin Jungreis: The uniformization of the complement of the Mandelbrot set. Duke Math. J. Volume 52, Number 4 (1985), 935-938.
- http://www.math.cornell.edu/~hubbard/OrsayEnglish.pdf Adrien Douady, John Hubbard, Etudes dynamique des polynomes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes)
- 10.1006/aama.1993.1002 . Computing the Laurent Series of the Map Ψ: C − D → C − M . 1993 . Bielefeld . B. . Fisher . Y. . Vonhaeseler . F. . Advances in Applied Mathematics . 14 . 25–38 . free .
- http://mathworld.wolfram.com/MandelbrotSet.html Weisstein, Eric W. "Mandelbrot Set." From MathWorld--A Wolfram Web Resource
- http://www.math.titech.ac.jp/~kawahira/programs/mandel-exray.pdf An algorithm to draw external rays of the Mandelbrot set by Tomoki Kawahira
- http://www.mrob.com/pub/muency/externalangle.html External angle at Mu-ENCY (the Encyclopedia of the Mandelbrot Set) by Robert Munafo
- http://www.mndynamics.com/indexp.html Computation of the external argument by Wolf Jung
- A. DOUADY, Algorithms for computing angles in the Mandelbrot set (Chaotic Dynamics and Fractals, ed. Barnsley and Demko, Acad. Press, 1986, pp. 155-168).
- http://www.math.cornell.edu/~hubbard/OrsayEnglish.pdf Adrien Douady, John H. Hubbard: Exploring the Mandelbrot set. The Orsay Notes. page 58
- http://www.dhushara.com/DarkHeart/DarkHeart.htm Exploding the Dark Heart of Chaos by Chris King from Mathematics Department of University of Auckland
- http://pcwww.liv.ac.uk/~helenam/Poster.pdf Topological Dynamics of Entire Functions by Helena Mihaljevic-Brandt
- http://pcwww.liv.ac.uk/~helenam/slides_manchester.pdf Dynamic rays of entire functions and their landing behaviour by Helena Mihaljevic-Brandt