In mathematics, especially linear algebra, the exchange matrices (also called the reversal matrix, backward identity, or standard involutory permutation) are special cases of permutation matrices, where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, they are 'row-reversed' or 'column-reversed' versions of the identity matrix.[1]
If is an exchange matrix, then the elements of are
\begin0 & 0 & 1 \\0 & 1 & 0 \\1 & 0 & 0\end\begin1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end =\begin7 & 8 & 9 \\4 & 5 & 6 \\1 & 2 & 3\end.
\begin1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end\begin0 & 0 & 1 \\0 & 1 & 0 \\1 & 0 & 0\end =\begin3 & 2 & 1 \\6 & 5 & 4 \\9 & 8 & 7\end.
J_n^\mathsf = J_n.
J_n^k = \begin I & \text k \text \\[2pt] J_n & \text k \text \end In particular, is an involutory matrix; that is,
\operatorname(J_n) = n\bmod 2.
\det(J_n) = (-1)^\frac As a function of, it has period 4, giving 1, 1, −1, −1 when is congruent modulo 4 to 0, 1, 2, and 3 respectively.
\det(\lambda I- J_n) = \begin \big[(\lambda+1)(\lambda-1)\big]^\frac & \text n \text \\[4pt] (\lambda-1)^\frac(\lambda+1)^\frac & \text n \text \end
\operatorname(J_n) = \sgn(\pi_n) J_n. (where is the sign of the permutation of elements).