In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcommk(R,M) are isomorphism classes of commutative k-algebras E with a homomorphism onto the k-algebra R whose kernel is the R-module M (with all pairs of elements in M having product 0). Note that some authors use Exal as the same functor. There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop, and Exalcotop that take a topology into account.
"Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by .
Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors.
Given homomorphisms of commutative rings A → B → C and a C-module L there is an exact sequence of A-modules
\begin{align} 0 → &\operatorname{Der}B(C,L) → \operatorname{Der}A(C,L) → \operatorname{Der}A(B,L) → \\ &\operatorname{Exalcomm}B(C,L) → \operatorname{Exalcomm}A(C,L) → \operatorname{Exalcomm}A(B,L) \end{align}
T
\underline{Exal
A
p:E\toB
I
p
I2=(0)
Note that the kernel can be equipped with a
B
p
b\inB
x\inE
b ⋅ m:=x ⋅ m
m\inI
k\inI
(x+k) ⋅ m=x ⋅ m+k ⋅ m=x ⋅ m
Square-zero extensions are a generalization of deformations over the dual numbers. For example, a deformation over the dual numbers
has the associated square-zero extension\begin{matrix} Spec\left(
k[x,y] (y2-x3) \right)&\to&Spec\left(
k[x,y][\varepsilon] (y2-x3+\varepsilon) \right)\\ \downarrow&&\downarrow\\ Spec(k)&\to&Spec(k[\varepsilon]) \end{matrix}
of0\to(\varepsilon)\to
k[x,y][\varepsilon] (y2-x3+\varepsilon) \to
k[x,y] (y2-x3) \to0
k
But, because the idea of square zero-extensions is more general, deformations over
k[\varepsilon1,\varepsilon2]
\varepsilon1 ⋅ \varepsilon2=0
For a
B
M
B ⊕ M
(b,m) ⋅ (b',m')=(bb',bm'+b'm)
0\toM\toB ⊕ M\toB\to0
M
The general abstract construction of Exal[1] follows from first defining a category of extensions
\underline{Exal
T
A
\underline{Exal
\pi:\underline{Exal
ExalA(B,M)
M\inOb(B-Mod)
For this fixed topos, let
\underline{Exal
(A,p:E\toB)
p:E\toB
A
I
(A,p:E\toB)\to(A',p':E'\toB')
\pi:\underline{Exal
(A,p:E\toB)
(A\toB,I)
I
B
Then, there is an overcategory denoted
\underline{Exal
\underline{Exal
(A,p:E\toB)
A
(A,p:E\toB)\to(A,p':E'\toB')
\underline{Exal
(A,p:E\toB)\to(A,p':E'\toB)
Finally, the category
\underline{Exal
Algmod
A,B
(A\toB,I)
I
B
B-Mod
\underline{Exal
\pi
B-Mod
The isomorphism classes of objects has the structure of a
B
\underline{Exal
ExalA(B,I)
There are a few results on the structure of
\underline{Exal
ExalA(B,I)
The group of automorphisms of an object
X\inOb(\underline{Exal
B ⊕ M
B ⊕ M\toB ⊕ M
M\toB ⊕ M
B ⊕ M\toB
DerA(B,M)
\underline{Exal
There is another useful result about the categories
\underline{Exal
I ⊕ J
It can be interpreted as saying the square-zero extension from a deformation in two directions can be decomposed into a pair of square-zero extensions, each in the direction of one of the deformations.}_A(B,I\oplus J) \cong \underline_A(B,I)\times \underline_A(B,J)\underline{Exal
For example, the deformations given by infinitesimals
\varepsilon1,\varepsilon2
2 | |
\varepsilon | |
1 |
=\varepsilon1\varepsilon2=
2 | |
\varepsilon | |
2 |
=0
where}_A(B,(\varepsilon_1) \oplus (\varepsilon_2)) \cong\underline_A(B,(\varepsilon_1))\times \underline_A(B,(\varepsilon_2))\underline{Exal
I
hence they are just a pair of first order deformations paired together.
1(X,T H X) x
1(X,T H X)
The cotangent complex contains all of the information about a deformation problem, and it is a fundamental theorem that given a morphism of rings
A\toB
T
T
So, given a commutative square of ring morphisms(theorem III.1.2.3)ExalA(B,M)\xrightarrow{\simeq}
1(L Ext B/A ,M)
over\begin{matrix} A'&\to&B'\\ \downarrow&&\downarrow\\ A&\to&B \end{matrix}
T
whose horizontal arrows are isomorphisms and\begin{matrix} ExalA(B,M)&\to&
1 Ext B(L B/A,M)\\ \downarrow&&\downarrow\\ ExalA'(B',M)&\to&
1 Ext B' (LB'/A',M) \end{matrix}
M
B'