In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on
n
\Rn
The Euclidean norm on
\Rn
\| ⋅ \|:\Rn\to\R
Like all norms, it induces a canonical metric defined by
d(p,q)=\|p-q\|.
d:\Rn x \Rn\to\R
p=\left(p1,\ldots,pn\right)
q=\left(q1,\ldots,qn\right)
In any metric space, the open balls form a base for a topology on that space.[1] The Euclidean topology on
\Rn
\Rn
Br(p)
Br(p):=\left\{x\in\Rn:d(p,x)<r\right\},
r>0
p\in\Rn,
d
When endowed with this topology, the real line
\R
A
B
\R
\overline{A}\capB=A\cap\overline{B}=\varnothing,
\overline{A}
A,
SA
SB
A\subseteqSA
B\subseteqSB
SA\capSB=\varnothing.