In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime. Conversely, a regime of a process that is not ergodic is said to be in non-ergodic regime.[1] A regime implies a time-window of a process whereby ergodicity measure is applied.
One can discuss the ergodicity of various statistics of a stochastic process. For example, a wide-sense stationary process
X(t)
\muX=E[X(t)],
rX(\tau)=E[(X(t)-\muX)(X(t+\tau)-\muX)],
that depends only on the lag
\tau
t
\muX
rX(\tau)
X
The process
X(t)
\hat{\mu}X=
1 | |
T |
T | |
\int | |
0 |
X(t)dt
converges in squared mean to the ensemble average
\muX
T → infty
Likewise,the process is said to be autocovariance-ergodic or d moment[3] if the time average estimate
\hat{r}X(\tau)=
1 | |
T |
T | |
\int | |
0 |
[X(t+\tau)-\muX][X(t)-\muX]dt
converges in squared mean to the ensemble average
rX(\tau)
T → infty
The notion of ergodicity also applies to discrete-time random processes
X[n]
n
A discrete-time random process
X[n]
\hat{\mu}X=
1 | |
N |
N | |
\sum | |
n=1 |
X[n]
converges in squared meanto the ensemble average
E[X]
N → infty
Ergodicity means the ensemble average equals the time average. Following are examples to illustrate this principle.
Each operator in a call centre spends time alternately speaking and listening on the telephone, as well as taking breaks between calls. Each break and each call are of different length, as are the durations of each 'burst' of speaking and listening, and indeed so is the rapidity of speech at any given moment, which could each be modelled as a random process.
Each resistor has an associated thermal noise that depends on the temperature. Take N resistors (N should be very large) and plot the voltage across those resistors for a long period. For each resistor you will have a waveform. Calculate the average value of that waveform; this gives you the time average. There are N waveforms as there are N resistors. These N plots are known as an ensemble. Now take a particular instant of time in all those plots and find the average value of the voltage. That gives you the ensemble average for each plot. If ensemble average and time average are the same then it is ergodic.