9-cube explained

bgcolor=#e7dcc3 colspan=29-cube
Enneract
bgcolor=#ffffff align=center colspan=2
Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, yellow have 4, and the green center has 8
TypeRegular 9-polytope
Familyhypercube
Schläfli symbol
Coxeter-Dynkin diagram
8-faces18
7-faces144
6-faces672
5-faces2016
4-faces4032
Cells5376
Faces4608
Edges2304
Vertices512
Vertex figure
Petrie polygonoctadecagon
Coxeter groupC9, [3<sup>7</sup>,4]
Dual
Propertiesconvex, Hanner polytope
In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

It can be named by its Schläfli symbol, being composed of three 8-cubes around each 7-face. It is also called an enneract, a portmanteau of tesseract (the 4-cube) and enne for nine (dimensions) in Greek. It can also be called a regular octadeca-9-tope or octadecayotton, as a nine-dimensional polytope constructed with 18 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a 9-cube can be called a 9-orthoplex, and is a part of the infinite family of cross-polytopes.

Cartesian coordinates

Cartesian coordinates for the vertices of a 9-cube centered at the origin and edge length 2 are

(±1,±1,±1,±1,±1,±1,±1,±1,±1)while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7, x8) with −1 < xi < 1.

Derived polytopes

Applying an alternation operation, deleting alternating vertices of the 9-cube, creates another uniform polytope, called a 9-demicube, (part of an infinite family called demihypercubes), which has 18 8-demicube and 256 8-simplex facets.

References

External links