In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map, and an endomorphism of a group is a group homomorphism . In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set S to itself.
In any category, the composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a monoid, the full transformation monoid, and denoted (or to emphasize the category).
See main article: Automorphism. An invertible endomorphism of is called an automorphism. The set of all automorphisms is a subset of with a group structure, called the automorphism group of and denoted . In the following diagram, the arrows denote implication:
Automorphism | ⇒ | Isomorphism | |
⇓ | ⇓ | ||
Endomorphism | ⇒ | (Homo)morphism |
See main article: Endomorphism ring. Any two endomorphisms of an abelian group,, can be added together by the rule . Under this addition, and with multiplication being defined as function composition, the endomorphisms of an abelian group form a ring (the endomorphism ring). For example, the set of endomorphisms of
Zn
In any concrete category, especially for vector spaces, endomorphisms are maps from a set into itself, and may be interpreted as unary operators on that set, acting on the elements, and allowing the notion of element orbits to be defined, etc.
Depending on the additional structure defined for the category at hand (topology, metric, ...), such operators can have properties like continuity, boundedness, and so on. More details should be found in the article about operator theory.
An endofunction is a function whose domain is equal to its codomain. A homomorphic endofunction is an endomorphism.
Let be an arbitrary set. Among endofunctions on one finds permutations of and constant functions associating to every in the same element in . Every permutation of has the codomain equal to its domain and is bijective and invertible. If has more than one element, a constant function on has an image that is a proper subset of its codomain, and thus is not bijective (and hence not invertible). The function associating to each natural number the floor of has its image equal to its codomain and is not invertible.
Finite endofunctions are equivalent to directed pseudoforests. For sets of size there are endofunctions on the set.
Particular examples of bijective endofunctions are the involutions; i.e., the functions coinciding with their inverses.