Empirical process explained
In probability theory, an empirical process is a stochastic process that characterizes the deviation of the empirical distribution function from its expectation.In mean field theory, limit theorems (as the number of objects becomes large) are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.[1]
Definition
For X1, X2, ... Xn independent and identically-distributed random variables in R with common cumulative distribution function F(x), the empirical distribution function is defined by
where I
C is the
indicator function of the set
C.
For every (fixed) x, Fn(x) is a sequence of random variables which converge to F(x) almost surely by the strong law of large numbers. That is, Fn converges to F pointwise. Glivenko and Cantelli strengthened this result by proving uniform convergence of Fn to F by the Glivenko–Cantelli theorem.[2]
A centered and scaled version of the empirical measure is the signed measure
Gn(A)=\sqrt{n}(Pn(A)-P(A))
It induces a map on measurable functions
f given by
f\mapstoGn
f(Xi)-Ef\right)
By the central limit theorem,
converges in distribution to a
normal random variable
N(0,
P(
A)(1 −
P(
A))) for fixed measurable set
A. Similarly, for a fixed function
f,
converges in distribution to a normal random variable
, provided that
and
exist.
Definition
} is called an
empirical process indexed by
, a collection of measurable subsets of
S.
} is called an
empirical process indexed by
, a collection of measurable functions from
S to
.
A significant result in the area of empirical processes is Donsker's theorem. It has led to a study of Donsker classes: sets of functions with the useful property that empirical processes indexed by these classes converge weakly to a certain Gaussian process. While it can be shown that Donsker classes are Glivenko–Cantelli classes, the converse is not true in general.
Example
As an example, consider empirical distribution functions. For real-valued iid random variables X1, X2, ..., Xn they are given by
Fn(x)=Pn((-infty,x])=PnI(-infty,x].
In this case, empirical processes are indexed by a class
l{C}=\{(-infty,x]:x\inR\}.
It has been shown that
is a Donsker class, in particular,
converges weakly in
to a
Brownian bridge B(
F(
x)) .
See also
Further reading
- Book: Billingsley, P. . Probability and Measure . John Wiley and Sons . New York . Third . 1995 . 0471007102 .
- Donsker . M. D. . Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems . 10.1214/aoms/1177729445 . The Annals of Mathematical Statistics . 23 . 2 . 277–281 . 1952 . free .
- Dudley . R. M. . Central Limit Theorems for Empirical Measures . 10.1214/aop/1176995384 . The Annals of Probability . 6 . 6 . 899–929 . 1978 . free .
- Book: Dudley, R. M. . Uniform Central Limit Theorems . Cambridge Studies in Advanced Mathematics . 63 . Cambridge University Press . Cambridge, UK . 1999 .
- Book: Kosorok . M. R. . Introduction to Empirical Processes and Semiparametric Inference . 10.1007/978-0-387-74978-5 . Springer Series in Statistics . 2008 . 978-0-387-74977-8 .
- Book: Galen Shorack . Jon Wellner . Shorack . G. R. . Wellner . J. A. . 10.1137/1.9780898719017 . Empirical Processes with Applications to Statistics . 2009 . 978-0-89871-684-9 .
- Book: Aad W. . van der Vaart . Aad van der Vaart . Jon A. . Wellner . Weak Convergence and Empirical Processes: With Applications to Statistics . 2nd . Springer . 2000 . 978-0-387-94640-5 .
- Dzhaparidze . K. O. . Nikulin . M. S. . 10.1007/BF01239992 . Probability distributions of the Kolmogorov and omega-square statistics for continuous distributions with shift and scale parameters . Journal of Soviet Mathematics . 20 . 3 . 2147 . 1982 . 123206522 .
External links
Notes and References
- Mojirsheibani . M. . Nonparametric curve estimation with missing data: A general empirical process approach . 10.1016/j.jspi.2006.02.016 . Journal of Statistical Planning and Inference . 137 . 9 . 2733–2758 . 2007 .
- Wolfowitz . J. . 10.1214/aoms/1177728852 . Generalization of the Theorem of Glivenko-Cantelli . The Annals of Mathematical Statistics . 25 . 131–138 . 1954 . free .