Duchenne muscular dystrophy explained
Duchenne muscular dystrophy |
Field: | Pediatric neurology, neuromuscular medicine, medical genetics |
Symptoms: | Muscle weakness, trouble standing up, scoliosis[1] [2] |
Onset: | Around age 4 |
Causes: | Genetic (X-linked recessive) |
Diagnosis: | Genetic testing |
Treatment: | Pharmacological treatment, physical therapy, braces, speech therapy, occupational therapy, surgery, assisted ventilation |
Medication: | Corticosteroids |
Prognosis: | life expectancy 28–30 years
|
Frequency: | In males, 1 in 3,500-6,000 In females, 1 in 50,000,000[3] |
Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy predominantly affecting boys.[4] [5] [6] The onset of muscle weakness typically begins around age four, with rapid progression.[1] Initially, muscle loss occurs in the thighs and pelvis, extending to the arms,[4] which can lead to difficulties in standing up.[4] By the age of 12, most individuals with Duchenne muscular dystrophy are unable to walk.[1] Affected muscles may appear larger due to an increase in fat content,[4] and scoliosis is common.[4] Some individuals may experience intellectual disability,[4] and females carrying a single copy of the mutated gene may show mild symptoms.[4]
Duchenne muscular dystrophy is caused by mutations and/or deletions in any of the 79 exons encoding the large dystrophin protein, which is essential for maintaining the muscle fiber's cell membrane integrity. The disorder follows an X-linked recessive inheritance pattern, with approximately two-thirds of cases inherited from the mother and one-third resulting from a new mutation. Diagnosis can frequently be made at birth through genetic testing, and elevated creatine kinase levels in the blood are indicative of the condition.
While there is no known cure, management strategies such as physical therapy, braces, and corrective surgery may alleviate symptoms. Assisted ventilation may be required in those with weakness of breathing muscles. Several drugs designed to address the root cause are currently available including gene therapy (Elevidys), and antisense drugs (Ataluren, Eteplirsen etc.). Other medications used include glucocorticoids (Deflazacort, Vamorolone); calcium channel blockers (Diltiazem); to slow skeletal and cardiac muscle degeneration, anticonvulsants to control seizures and some muscle activity, and Histone deacetylase inhibitors (Givinostat) to delay damage to dying muscle cells.
Various figures of the occurrence of Duchenne muscular dystrophy are reported. One source reports that it affects about one in 3,500 to 6,000 males at birth. Another source reports Duchenne muscular dystrophy being a rare disease and having an occurrence of 7.1 per 100,000 male births.[7] A number of sources referenced in this article indicate an occurrence of 6 per 100,000.[8]
Duchenne muscular dystrophy is the most common type of muscular dystrophy, with a median life expectancy of 28–30 years. However, with comprehensive care, some individuals may live into their 30s or 40s. Duchenne muscular dystrophy is considerably rarer in females, occurring in approximately one in 50,000,000 live female births.
Signs and symptoms
Duchenne muscular dystrophy causes progressive muscle weakness due to muscle fiber disarray, death, and replacement with connective tissue or fat.[4] The voluntary muscles are affected first, especially those of the hips, pelvic area, thighs, calves.[9] It eventually progresses to the shoulders and neck, followed by arms, respiratory muscles, and other areas.[9] Fatigue is common.[10]
Signs usually appear before age five, and may even be observed from the moment a boy takes his first steps.[11] There is general difficulty with motor skills, which can result in an awkward manner of walking, stepping, or running. They tend to walk on their toes, in part due to shortening of the Achilles tendon,[12] and because it compensates for knee extensor weakness.[9] Falls can be frequent. It becomes increasingly difficult for the boy to walk. His ability to walk usually disintegrates completely before age 13. Most men affected with Duchenne muscular dystrophy become essentially "paralyzed from the neck down" by the age of 21. Cardiomyopathy, particularly dilated cardiomyopathy, is common, seen in half of 18-year-olds.[13] The development of congestive heart failure or arrhythmia (irregular heartbeat) is only occasional.[9] In late stages of the disease, respiratory impairment and swallowing impairment can occur, which can result in pneumonia.
A classic sign of Duchenne muscular dystrophy is trouble getting up from lying or sitting position,[14] as manifested by a positive Gowers's sign. When a child tries to arise from lying on his stomach, he compensates for pelvic muscle weakness through use of the upper extremities: first by rising to stand on his arms and knees, and then "walking" his hands up his legs to stand upright. Another characteristic sign of Duchenne muscular dystrophy is pseudohypertrophy (enlarging) of the muscles of the tongue, calves, buttocks, and shoulders (around age 4 or 5). The muscle tissue is eventually replaced by fat and connective tissue, hence the term pseudohypertrophy. Muscle fiber deformities and muscle contractures of Achilles tendon and hamstrings can occur, which impair functionality because the muscle fibers shorten and fibrose in connective tissue.[9] Skeletal deformities can occur, such as lumbar hyperlordosis, scoliosis, anterior pelvic tilt, and chest deformities. Lumbar hyperlordosis is thought to be compensatory mechanism in response to gluteal and quadriceps muscle weakness, all of which cause altered posture and gait (e.g.: restricted hip extension).[15] [16]
Non musculoskeletal manifestations of Duchenne muscular dystrophy occur. There is a higher risk of neurobehavioral disorders (e.g., ADHD), learning disorders (dyslexia), and non-progressive weaknesses in specific cognitive skills (in particular short-term verbal memory), which are believed to be the result of inadequate dystrophin in the brain.[17]
Cause
Duchenne muscular dystrophy is caused by a mutation of the dystrophin gene, located on the short arm of the X chromosome (locus Xp21) that codes for dystrophin protein. Mutations can either be inherited or occur spontaneously during germline transmission, causing a large reduction or absence of dystrophin, a protein that provides structural integrity in muscle cells.[18] Dystrophin is responsible for connecting the actin cytoskeleton of each muscle fiber to the underlying basal lamina (extracellular matrix), through a protein complex containing many subunits. The absence of dystrophin permits excess calcium to penetrate the sarcolemma (the cell membrane).[19]
Duchenne muscular dystrophy is extremely rare in females (about 1 in 50,000,000 female births).[3] It can occur in females with an affected father and a carrier mother, in those who are missing an X chromosome, or those who have an inactivated X chromosome (the most common of the rare reasons).[20] The daughter of a carrier mother and an affected father will be affected or a carrier with equal probability, as she will always inherit the affected X-chromosome from her father and has a 50% chance of also inheriting the affected X-chromosome from her mother.[21]
Disruption of the blood–brain barrier has been seen to be a noted feature in the development of Duchenne muscular dystrophy.[22]
Diagnosis
Duchenne muscular dystrophy can be detected with about 95% accuracy by genetic studies performed during pregnancy.
DNA test
The muscle-specific isoform of the dystrophin gene is composed of 79 exons, and DNA testing (blood test) and analysis can usually identify the specific type of mutation of the exon or exons that are affected. DNA testing confirms the diagnosis in most cases.[23]
Muscle biopsy
If DNA testing fails to find the mutation, a muscle biopsy test may be performed.[24] A small sample of muscle tissue is extracted using a biopsy needle. The key tests performed on the biopsy sample for Duchenne muscular dystrophy are immunohistochemistry, immunocytochemistry, and immunoblotting for dystrophin, and should be interpreted by an experienced neuromuscular pathologist.[25] These tests provide information on the presence or absence of the protein. Absence of the protein is a positive test for Duchenne muscular dystrophy. Where dystrophin is present, the tests indicate the amount and molecular size of dystrophin, helping to distinguish Duchenne muscular dystrophy from milder dystrophinopathy phenotypes.[26] Over the past several years, DNA tests have been developed that detect more of the many mutations that cause the condition, and muscle biopsy is not required as often to confirm the presence of Duchenne muscular dystrophy.[27]
Prenatal tests
A prenatal test can be considered when the mother is a known or suspected carrier.[28]
Prior to invasive testing, determination of the fetal sex is important; while males are sometimes affected by this X-linked disease, female Duchenne muscular dystrophy is extremely rare. This can be achieved by ultrasound scan at 16 weeks or more recently by free fetal DNA (cffDNA) testing. Chorion villus sampling (CVS) can be done at 11–14 weeks, and has a 1% risk of miscarriage. Amniocentesis can be done after 15 weeks, and has a 0.5% risk of miscarriage. Non invasive prenatal testing can be done around 10–12 weeks.[29] Another option in the case of unclear genetic test results is fetal muscle biopsy.
Treatment
No cure for Duchenne muscular dystrophy is known.[30]
Treatment is generally aimed at controlling symptoms to maximize the quality of life which can be measured using specific questionnaires,[31] and include:
- Corticosteroids such as prednisolone, deflazacort and Vamorolone (Agamree) lead to short-term improvements in muscle strength and function up to 2 years.[32] Corticosteroids have also been reported to help prolong walking, though the evidence for this is not robust.[33]
- Disease-specific physical therapy is helpful to maintain muscle strength, flexibility, and function. It aims to:
- Minimize the development of contractures and deformity by developing a programme of stretches and exercises where appropriate
- Anticipate and minimize other secondary complications of a physical nature by recommending bracing and durable medical equipment[34]
- Monitor respiratory function and advise on techniques to assist with breathing exercises and methods of clearing secretions[35]
- Orthopedic appliances (such as braces and wheelchairs) may improve mobility and the ability for self-care. Form-fitting removable leg braces that hold the ankle in place during sleep can defer the onset of contractures.
- Appropriate respiratory support as the disease progresses is important.
- Cardiac problems may require a pacemaker.[36]
The medication eteplirsen, a Morpholino antisense oligo, has been approved in the United States for the treatment of mutations amenable to dystrophin exon 51 skipping. The US approval has been controversial[37] as eteplirsen failed to establish a clinical benefit;[38] it has been refused approval by the European Medicines Agency.[39] [40]
The medication ataluren (Translarna) is approved for use in the European Union.[41] [42]
The antisense oligonucleotide golodirsen (Vyondys 53) was approved for medical use in the United States in 2019, for the treatment of cases that can benefit from skipping exon 53 of the dystrophin transcript.[43] [44]
The Morpholino antisense oligonucleotide viltolarsen (Viltepso) was approved for medical use in the United States in August 2020, for the treatment of Duchenne muscular dystrophy (DMD) in people who have a confirmed mutation of the DMD gene that is amenable to exon 53 skipping.[45] It is the second approved targeted treatment for people with this type of mutation in the United States. Approximately 8% of people with DMD have a mutation that is amenable to exon 53 skipping.
Casimersen (Amondys 45) was approved for medical use in the United States in February 2021,[46] and it is the first FDA-approved targeted treatment for people who have a confirmed mutation of the Duchenne muscular dystrophy gene that is amenable to exon 45 skipping.
Comprehensive multidisciplinary care guidelines for Duchenne muscular dystrophy have been developed by the US Centers for Disease Control and Prevention, and were published in 2010. An update was published in 2018.[47] [48]
Delandistrogene moxeparvovec (Elevidys) is a gene therapy that in June 2023 received United States FDA accelerated approval for treatment of four and five-year-old children.[49] [50]
In March 2024, the US Food and Drug Administration (FDA) granted approval for givinostat (Duvyzat), an oral medication, to be used in the treatment of Duchenne muscular dystrophy in people aged six years and older. Givinostat is the first nonsteroidal drug to receive FDA approval for the treatment of all genetic variants of Duchenne muscular dystrophy. Functioning as a histone deacetylase (Histone deacetylase (HDAC) inhibitor, givinostat operates by targeting pathogenic processes within the body, ultimately leading to a reduction in inflammation and muscle loss associated with the disease.[51]
Prognosis
Duchenne muscular dystrophy is a rare progressive disease which eventually affects all voluntary muscles and involves the heart and breathing muscles in later stages. Life expectancy is estimated to be around 25–26,[52] but this varies. People born with Duchenne muscular dystrophy after 1990 have a median life expectancy of approximately 28–30.[53] [54] With excellent medical care, affected men often live into their 30s.[55] David Hatch of Paris, Maine, may have been the oldest person in the world with the disease; he lived to the age of 56.[56] [57]
The most common direct cause of death in people with Duchenne muscular dystrophy is respiratory failure. Complications from treatment, such as mechanical ventilation and tracheotomy procedures, are also a concern. The next leading cause of death is cardiac-related conditions such as heart failure brought on by dilated cardiomyopathy. With respiratory assistance, the median survival age can reach up to 40. In rare cases, people with Duchenne muscular dystrophy have been seen to survive into their forties or early fifties, with proper positioning in wheelchairs and beds, and the use of ventilator support (via tracheostomy or mouthpiece), airway clearance, and heart medications.[58] Early planning of the required supports for later-life care has shown greater longevity for people with Duchenne muscular dystrophy.[59]
Curiously, in the mdx mouse model of Duchenne muscular dystrophy, the lack of dystrophin is associated with increased calcium levels and skeletal muscle myonecrosis. The intrinsic laryngeal muscles (ILMs) are protected and do not undergo myonecrosis.[60] ILMs have a calcium regulation system profile suggestive of a better ability to handle calcium changes in comparison to other muscles, and this may provide a mechanistic insight for their unique pathophysiological properties.[61] In addition, patients with Duchenne muscular dystrophy also have elevated plasma lipoprotein levels, implying a primary state of dyslipidemia in patients.[62]
Epidemiology
Duchenne muscular dystrophy is the most common type of muscular dystrophy; it affects about one in 5,000 males at birth.[4] Duchenne muscular dystrophy has an incidence of one in 3,600 male infants.
In the US, a 2010 study showed a higher amount of those with Duchenne muscular dystrophy age ranging from 5 to 54 who are Hispanic compared to non-Hispanic Whites, and non-Hispanic Blacks.[63] [64]
History
The disease was first described by the Neapolitan physician Giovanni Semmola in 1834 and Gaetano Conte in 1836.[65] [66] [67] However, Duchenne muscular dystrophy is named after the French neurologist Guillaume-Benjamin-Amand Duchenne (1806–1875), who in the 1861 edition of his book Paraplégie hypertrophique de l'enfance de cause cérébrale, described and detailed the case of a boy who had this condition. A year later, he presented photos of his patient in his Album de photographies pathologiques. In 1868, he gave an account of 13 other affected children. Duchenne was the first to do a biopsy to obtain tissue from a living patient for microscopic examination.[68]
Society and culture
Notable cases
Research
Efforts are ongoing to find medications that either return the ability to make dystrophin or utrophin.[74] Other efforts include trying to block the entry of calcium ions into muscle cells.[75]
Exon-skipping
Antisense oligonucleotides (oligos), structural analogs of DNA, are the basis of a potential treatment for 10% of people with Duchenne muscular dystrophy.[76] The compounds allow faulty parts of the dystrophin gene to be skipped when it is transcribed to RNA for protein production, permitting a still-truncated but more functional version of the protein to be produced.[77] It is also known as nonsense suppression therapy.[78]
Two kinds of antisense oligos, 2'-O-methyl phosphorothioate oligos (like Drisapersen) and Morpholino oligos (like eteplirsen), have tentative evidence of benefit and are being studied.[79] Eteplirsen is targeted to skip exon 51. "As an example, skipping exon 51 restores the reading frame of ~ 15% of all the boys with deletions. It has been suggested that by having 10 AONs to skip 10 different exons it would be possible to deal with more than 70% of all DMD boys with deletions."[76] This represents about 1.5% of cases.[76]
People with Becker's muscular dystrophy, which is milder than DMD, have a form of dystrophin which is functional even though it is shorter than normal dystrophin.[80] In 1990 England et al. noticed that a patient with mild Becker muscular dystrophy was lacking 46% of his coding region for dystrophin.[80] This functional, yet truncated, form of dystrophin gave rise to the notion that shorter dystrophin can still be therapeutically beneficial. Concurrently, Kole et al. had modified splicing by targeting pre-mRNA with antisense oligonucleotides (AONs).[81] Kole demonstrated success using splice-targeted AONs to correct missplicing in cells removed from beta-thalassemia patients[82] [83] Wilton's group tested exon skipping for muscular dystrophy.[84] [85]
Gene therapy
Researchers are working on a gene editing method to correct a mutation that leads to Duchenne muscular dystrophy (DMD).[86] Researchers used a technique called CRISPR/Cas9-mediated genome editing, which can precisely remove a mutation in the dystrophin gene in DNA, allowing the body's DNA repair mechanisms to replace it with a normal copy of the gene.[87] [88]
Genome editing through the CRISPR/Cas9 system is not currently feasible in humans. However, it may be possible, through advancements in technology, to use this technique to develop therapies for DMD in the future.[89] [90] In 2007, researchers did the world's first clinical (viral-mediated) gene therapy trial for Duchenne MD.[91]
Biostrophin is a delivery vector for gene therapy in the treatment of Duchenne muscular dystrophy and Becker muscular dystrophy.[92]
Future developments
Several medications designed to address the root cause are under development, including gene therapy and antisense drugs. Other medications used include corticosteroids to slow muscle degeneration. Physical therapy, orthopedic braces, and corrective surgery may help with some symptoms while assisted ventilation may be required in those with weakness of breathing muscles. Outcomes depend on the specific type of disorder.[93] [4]
Notes and References
- Web site: NINDS Muscular Dystrophy Information Page . National Institute of Neurological Disorders and Stroke (NINDS) . 12 September 2016. 4 March 2016. live. https://web.archive.org/web/20160730004520/http://www.ninds.nih.gov/disorders/md/md.htm. 30 July 2016.
- Web site: Muscular Dystrophy . National Institute of Neurological Disorders and Stroke (NINDS) . 30 October 2023 . 31 March 2024 . 31 March 2024 . https://web.archive.org/web/20240331193530/https://www.ninds.nih.gov/health-information/disorders/muscular-dystrophy . live .
- Nozoe KT, Akamine RT, Mazzotti DR, Polesel DN, Grossklauss LF, Tufik S, Andersen ML, Moreira GA . Phenotypic contrasts of Duchenne Muscular Dystrophy in women: Two case reports . Sleep Science . 9 . 3 . 129–133 . 2016 . 28123647 . 5241604 . 10.1016/j.slsci.2016.07.004 .
- Web site: 4 March 2016 . Muscular Dystrophy: Hope Through Research . https://web.archive.org/web/20160930165657/http://www.ninds.nih.gov/disorders/md/detail_md.htm#180483171 . 30 September 2016 . 12 September 2016 . National Institute of Neurological Disorders and Stroke (NINDS) .
- Web site: Muscular Dystrophy: Hope Through Research . National Institute of Neurological Disorders and Stroke (NINDS) . September 2013 . 31 March 2024 . 31 March 2024 . https://web.archive.org/web/20240331193837/https://catalog.ninds.nih.gov/publications/muscular-dystrophy-hope-through-research . live .
- https://catalog.ninds.nih.gov/sites/default/files/publications/muscular-dystrophy-hope-through-research.pdf
- Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S, Trifirò G . Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis . Orphanet Journal of Rare Diseases . 15 . 1 . 141 . June 2020 . 32503598 . 7275323 . 10.1186/s13023-020-01430-8 . free . doi .
- Web site: 17 November 2017 . Duchenne Muscular Dystrophy (DMD) . 15 November 2022 . Muscular Dystrophy Association . 15 November 2022 . https://web.archive.org/web/20221115174432/https://www.mda.org/disease/duchenne-muscular-dystrophy . live .
- Web site: Duchenne muscular dystrophy . 24 January 2021 . Genetic and Rare Diseases (GARD) Information Center . 23 November 2016 . https://web.archive.org/web/20161123090800/https://rarediseases.info.nih.gov/diseases/6291/duchenne-muscular-dystrophy . live .
- Angelini C, Tasca E . Fatigue in muscular dystrophies . Neuromuscular Disorders . 22 Suppl 3 . S214–S220 . December 2012 . 3 . 23182642 . 3526799 . 10.1016/j.nmd.2012.10.010 .
- Book: Rowland LP . 1985 . Clinical Perspective: Phenotypic Expression In Muscular Dystrophy . Strohman C, Wolf S . Gene Expression in Muscle . Advances in Experimental Medicine and Biology . 3–5 . Plenum Press . https://www.springer.com/gp/book/9781468449099 . 978-1-4684-4907-5 . 7 August 2019 . 29 September 2020 . https://web.archive.org/web/20200929152544/https://www.springer.com/gp/book/9781468449099 . live .
- Book: Emery AE, Muntoni F, Quinlivan R . Duchenne Muscular Dystrophy . 2015 . OUP Oxford . 978-0-19968148-8 . Fourth . 27 May 2020 . 31 March 2024 . https://web.archive.org/web/20240331202526/https://books.google.com/books?id=iFPCBwAAQBAJ&pg=PP1#v=onepage&q&f=false . live .
- Book: Darras BT, Urion DK, Ghosh PS . Dystrophinopathies . GeneReviews . Seattle (WA) . University of Washington . 2018 . 20301298 .
- Web site: Muscular dystrophy - Symptoms and causes . . 6 February 2015 . live . https://web.archive.org/web/20150206164411/http://www.mayoclinic.org/diseases-conditions/muscular-dystrophy/basics/symptoms/con-20021240 . 6 February 2015 .
- Sutherland DH, Olshen R, Cooper L, Wyatt M, Leach J, Mubarak S, Schultz P . The pathomechanics of gait in Duchenne muscular dystrophy . Developmental Medicine and Child Neurology . 23 . 1 . 3–22 . February 1981 . 7202868 . 10.1111/j.1469-8749.1981.tb08442.x . 895379 .
- Baptista CR, Costa AA, Pizzato TM, Souza FB, Mattiello-Sverzut AC . Postural alignment in children with Duchenne muscular dystrophy and its relationship with balance . Brazilian Journal of Physical Therapy . 18 . 2 . 119–126 . 2014 . 24838810 . 4183248 . 10.1590/s1413-35552012005000152 .
- Doorenweerd N, Mahfouz A, van Putten M, Kaliyaperumal R, T' Hoen PA, Hendriksen JG, Aartsma-Rus AM, Verschuuren JJ, Niks EH, Reinders MJ, Kan HE, Lelieveldt BP . Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy . Scientific Reports . 7 . 1 . 12575 . October 2017 . 28974727 . 5626779 . 10.1038/s41598-017-12981-5 . 2017NatSR...712575D .
- Vera CD, Zhang A, Pang PD, Wu JC . Treating Duchenne Muscular Dystrophy: The Promise of Stem Cells, Artificial Intelligence, and Multi-Omics . Frontiers in Cardiovascular Medicine . 9 . 851491 . 2022 . 35360042 . 8960141 . 10.3389/fcvm.2022.851491 . free . doi .
- Web site: Duchenne Muscular Dystrophy: Pathophysiological Implications of Mitochondrial Calcium Signaling and ROS Production . 2 May 2012 . 29 June 2014 . https://web.archive.org/web/20120502165419/http://www.forschungsportal.ch/unibe/abstracts/A_62193673.html . 2 May 2012 .
- Web site: Wahl M . Quest - Article - But Girls Don't Get Duchenne, or Do They? - A Quest Article . Muscular Dystrophy Association . 21 October 2016 . 6 July 2019 . 12 April 2019 . https://web.archive.org/web/20190412192736/https://www.mda.org/quest/article/girls-dont-get-duchenne-or-do-they . live .
- Web site: Wucherpfennig . Julia . If a man has Duchenne muscular dystrophy, what are the chances his children will have DMD? . . Ask a Geneticist . 6 October 2016 . 5 August 2024.
- Nico B, Ribatti D . Morphofunctional aspects of the blood–brain barrier . Current Drug Metabolism . 13 . 1 . 50–60 . January 2012 . 22292807 . 10.2174/138920012798356970 .
- Web site: University of Utah Muscular Dystrophy . Genome.utah.edu . 28 November 2009 . 16 February 2013 . 14 September 2003 . https://web.archive.org/web/20030914125410/http://www.genome.utah.edu/DMD/methods_abstract.shtml .
- Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C . Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management . The Lancet. Neurology . 9 . 1 . 77–93 . January 2010 . 19945913 . 10.1016/s1474-4422(09)70271-6 . 328499 . 10.1.1.176.4466 .
- Nicholson LV, Johnson MA, Bushby KM, Gardner-Medwin D, Curtis A, Ginjaar IB, den Dunnen JT, Welch JL, Butler TJ, Bakker E . Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 2. Correlations within individual patients . Journal of Medical Genetics . 30 . 9 . 737–744 . September 1993 . 8411068 . 1016530 . 10.1136/jmg.30.9.737 .
- Muntoni F . Is a muscle biopsy in Duchenne dystrophy really necessary? . Neurology . 57 . 4 . 574–575 . August 2001 . 11524463 . 10.1212/wnl.57.4.574 . 13474827 .
- Flanigan KM, von Niederhausern A, Dunn DM, Alder J, Mendell JR, Weiss RB . Rapid direct sequence analysis of the dystrophin gene . American Journal of Human Genetics . 72 . 4 . 931–939 . April 2003 . 12632325 . 1180355 . 10.1086/374176 .
- Beksac MS, Tanacan A, Aydin Hakli D, Orgul G, Soyak B, Balci Hayta B, Dincer P, Topaloğlu H . Gestational Outcomes of Pregnant Women Who Have Had Invasive Prenatal Testing for the Prenatal Diagnosis of Duchenne Muscular Dystrophy . Journal of Pregnancy . 2018 . 9718316 . 30 July 2018 . 30151283 . 6091284 . 10.1155/2018/9718316 . free . doi .
- Devaney SA, Palomaki GE, Scott JA, Bianchi DW . Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis . JAMA . 306 . 6 . 627–636 . August 2011 . 21828326 . 4526182 . 10.1001/jama.2011.1114 .
- Web site: Duchenne Muscular Dystrophy Statement . 31 October 2014 . U.S. Food and Drug Administration (FDA) . https://web.archive.org/web/20141102003341/https://www.fda.gov/Drugs/DrugSafety/ucm421270.htm . 2 November 2014 .
- Dany A, Barbe C, Rapin A, Réveillère C, Hardouin JB, Morrone I, Wolak-Thierry A, Dramé M, Calmus A, Sacconi S, Bassez G, Tiffreau V, Richard I, Gallais B, Prigent H, Taiar R, Jolly D, Novella JL, Boyer FC . Construction of a Quality of Life Questionnaire for slowly progressive neuromuscular disease . Quality of Life Research . 24 . 11 . 2615–2623 . November 2015 . 26141500 . 10.1007/s11136-015-1013-8 . 25834947 .
- Falzarano MS, Scotton C, Passarelli C, Ferlini A . Duchenne Muscular Dystrophy: From Diagnosis to Therapy . Molecules . 20 . 10 . 18168–18184 . October 2015 . 26457695 . 6332113 . 10.3390/molecules201018168 . free . doi .
- Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY . Corticosteroids for the treatment of Duchenne muscular dystrophy . The Cochrane Database of Systematic Reviews . 5 . 5 . CD003725 . May 2016 . 27149418 . 8580515 . 10.1002/14651858.CD003725.pub4 .
- Pedlow K, McDonough S, Lennon S, Kerr C, Bradbury I . Assisted standing for Duchenne muscular dystrophy . The Cochrane Database of Systematic Reviews . 10 . 10 . CD011550 . October 2019 . 31606891 . 6790222 . 10.1002/14651858.CD011550.pub2 .
- Web site: Duchenne Muscular Dystrophy . 10 October 2022 . Physiopedia . 10 October 2022 . https://web.archive.org/web/20221010133739/https://www.physio-pedia.com/Duchenne_Muscular_Dystrophy . live .
- Verhaert D, Richards K, Rafael-Fortney JA, Raman SV . Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations . Circulation: Cardiovascular Imaging . 4 . 1 . 67–76 . January 2011 . 21245364 . 3057042 . 10.1161/CIRCIMAGING.110.960740 .
- Railroading at the FDA . Nature Biotechnology . 34 . 11 . 1078 . November 2016 . 27824847 . 10.1038/nbt.3733 . free . doi .
- FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. U.S. Food and Drug Administration (FDA). 8 July 2019. 19 September 2016. 2 August 2019. https://web.archive.org/web/20190802060217/https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-drug-duchenne-muscular-dystrophy. live.
- Web site: CHMP Advises Against Approval for Eteplirsen in DMD. Medscape. 9 July 2019. 9 July 2019. https://web.archive.org/web/20190709081742/http://www.medscape.com/viewarticle/897496. live.
- Web site: Exondys . European Medicines Agency . 17 September 2018 . 3 December 2022 . 26 November 2020 . https://web.archive.org/web/20201126221344/https://www.ema.europa.eu/en/medicines/human/EPAR/exondys . live .
- Web site: Translarna EPAR . European Medicines Agency (EMA) . 14 August 2020 . 29 October 2020 . https://web.archive.org/web/20201029153952/https://www.ema.europa.eu/en/medicines/human/EPAR/translarna . live .
- Web site: Translarna - Summary of Product Characteristics (SmPC). (emc). 18 June 2017. 24 April 2017. 15 July 2017. https://web.archive.org/web/20170715082409/http://www.medicines.org.uk/emc/medicine/33294. live.
- FDA grants accelerated approval to first targeted treatment for rare Duchenne muscular dystrophy mutation . U.S. Food and Drug Administration (FDA) . 12 December 2019 . https://web.archive.org/web/20191213043443/https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation . 13 December 2019 . live . 12 December 2019.
- Web site: Drug Approval Package: Vyondys 53 (golodirsen) . U.S. Food and Drug Administration (FDA) . 21 January 2020 . 22 January 2020 . 2 March 2020 . https://web.archive.org/web/20200302122445/https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211970Orig1s000TOC.cfm . live .
- FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation . U.S. Food and Drug Administration (FDA) . 12 August 2020 . 12 August 2020 . 20 August 2020 . https://web.archive.org/web/20200820041846/https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation . live .
- FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation . U.S. Food and Drug Administration (FDA) . 25 February 2021 . 25 February 2021 . 3 August 2021 . https://web.archive.org/web/20210803155300/https://www.fda.gov/news-events/press-announcements/fda-approves-targeted-treatment-rare-duchenne-muscular-dystrophy-mutation-0 . live .
- Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, Street N, Tomezsko J, Wagner KR, Ward LM, Weber DR . Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management . The Lancet. Neurology . 17 . 3 . 251–267 . March 2018 . 29395989 . 5869704 . 10.1016/S1474-4422(18)30024-3 . free . doi .
- Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, Case LE, Cripe L, Hadjiyannakis S, Olson AK, Sheehan DW, Bolen J, Weber DR, Ward LM . Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management . The Lancet. Neurology . 17 . 4 . 347–361 . April 2018 . 29395990 . 5889091 . 10.1016/S1474-4422(18)30025-5 . free . doi .
- FDA Approves First Gene Therapy for Treatment of Certain Patients with Duchenne Muscular Dystrophy . U.S. Food and Drug Administration (FDA) . 22 June 2023 . 22 June 2023 . 29 November 2023 . https://web.archive.org/web/20231129153732/https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-treatment-certain-patients-duchenne-muscular-dystrophy . live .
- Sarepta Therapeutics Announces FDA Approval of Elevidys, the First Gene Therapy to Treat Duchenne Muscular Dystrophy . Sarepta Therapeutics . Business Wire . 22 June 2023 . 22 June 2023 . 23 June 2023 . https://web.archive.org/web/20230623023327/https://www.businesswire.com/news/home/20230622454844/en/Sarepta-Therapeutics-Announces-FDA-Approval-of-ELEVIDYS-the-First-Gene-Therapy-to-Treat-Duchenne-Muscular-Dystrophy . live .
- 21 March 2024 . FDA Approves Nonsteroidal Treatment for Duchenne Muscular Dystrophy . U.S. Food and Drug Administration (FDA) . 23 March 2024 . 23 March 2024 . https://web.archive.org/web/20240323061939/https://www.fda.gov/news-events/press-announcements/fda-approves-nonsteroidal-treatment-duchenne-muscular-dystrophy . live .
- Book: International Neurology . Lisak RP, Truong DD, Carroll W, Bhidayasiri R . 2011 . Wiley . 978-1-4443-1701-5 . 222.
- Broomfield . Jonathan . Hill . Micki . Guglieri . Michela . Crowther . Michael . Abrams . Keith . 2021-12-07 . Life Expectancy in Duchenne Muscular Dystrophy: Reproduced Individual Patient Data Meta-analysis . Neurology . 97 . 23 . e2304–e2314 . 10.1212/WNL.0000000000012910 . 0028-3878 . 34645707. 8665435 . free .
- Landfeldt . Erik . Thompson . Rachel . Sejersen . Thomas . McMillan . Hugh J. . Kirschner . Janbernd . Lochmüller . Hanns . 2020 . Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis . European Journal of Epidemiology . 35 . 7 . 643–653 . 10.1007/s10654-020-00613-8 . 1573-7284 . 7387367 . 32107739.
- Web site: Duchenne muscular dystrophy (DMD) | Muscular Dystrophy Campaign . Muscular-dystrophy.org . 16 February 2013 . https://web.archive.org/web/20130121140345/http://www.muscular-dystrophy.org/about_muscular_dystrophy/conditions/97_duchenne_muscular_dystrophy . 21 January 2013 .
- News: Nursing home resident defies COVID, wants to eat out again. 14 January 2021. Sun Journal. Carter N. 14 January 2021. 14 January 2021. https://web.archive.org/web/20210114123246/https://www.sunjournal.com/2021/01/14/nursing-home-resident-defies-covid-wants-to-eat-out-again/. live.
- News: Obituaries - Cliff Gray Cremations and Funeral Services. February 2022. 28 December 2022. 28 December 2022. https://web.archive.org/web/20221228021609/https://cliffgraycremations.com/obituaries/david-c-hatch/129/. live.
- Kieny P, Chollet S, Delalande P, Le Fort M, Magot A, Pereon Y, Perrouin Verbe B . Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011 . Annals of Physical and Rehabilitation Medicine . 56 . 6 . 443–454 . September 2013 . 23876223 . 10.1016/j.rehab.2013.06.002 . free . doi .
- Krajina A, Podrabský P, Steinhart L, Endrys J, Coufal L . [Personal experimental experience with the administration of liquid obliterative agents using percutaneous intra-arterial balloon catheters with a controlled leak] . Sbornik Vedeckych Praci Lekarske Fakulty Karlovy Univerzity V Hradci Kralove. Supplementum . 30 . 2 . 201–211 . 22 November 2012 . 3504593 . 3504593 . 10.1186/1750-1172-7-S2-A8 . free . doi .
- Marques MJ, Ferretti R, Vomero VU, Minatel E, Neto HS . Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy . Muscle & Nerve . 35 . 3 . 349–353 . March 2007 . 17143878 . 10.1002/mus.20697 . 41968787 .
- Ferretti R, Marques MJ, Khurana TS, Santo Neto H . Expression of calcium-buffering proteins in rat intrinsic laryngeal muscles . Physiological Reports . 3 . 6 . e12409 . June 2015 . 26109185 . 4510619 . 10.14814/phy2.12409 .
- White Z, Hakim CH, Theret M, Yang NN, Rossi F, Cox D, Francis GA, Straub V, Selby K, Panagiotopoulos C, Duan D, Bernatchez P . High prevalence of plasma lipid abnormalities in human and canine Duchenne and Becker muscular dystrophies depicts a new type of primary genetic dyslipidemia . Journal of Clinical Lipidology . 14 . 4 . 459–469.e0 . July 2020 . 32593511 . 7492428 . 10.1016/j.jacl.2020.05.098 . 219741257 .
- Web site: Population-Based Prevalence of Duchenne and Becker Muscular Dystrophies in the United States . 5 January 2018 . U.S. Centers for Disease Control and Prevention (CDC) . 18 November 2018 . 18 November 2018 . https://web.archive.org/web/20181118081731/https://www.cdc.gov/ncbddd/musculardystrophy/features/key-findings-population-duchenne.html . live .
- Romitti PA, Zhu Y, Puzhankara S, James KA, Nabukera SK, Zamba GK, Ciafaloni E, Cunniff C, Druschel CM, Mathews KD, Matthews DJ, Meaney FJ, Andrews JG, Conway KM, Fox DJ, Street N, Adams MM, Bolen J . Prevalence of Duchenne and Becker muscular dystrophies in the United States . Pediatrics . 135 . 3 . 513–21 . March 2015 . 25687144 . 4477633 . 10.1542/peds.2014-2044 .
- Web site: Cardiomiologia e Genetica Medica . Cardiomyology and Medical Genetics . it . Politano L . . 24 August 2015 . live . https://web.archive.org/web/20150704203015/http://www.cardiomiologia.unina2.it/index.php?option=com_content&view=article&id=54&Itemid=58 . 4 July 2015 .
- Web site: Da Conte a Duchenne . By Conte in Duchenne . it . De Rosa G . October 2005 . DM . Unione Italiana Lotta alla Distrofia Muscolare . 24 August 2015 . https://web.archive.org/web/20160304000807/http://www.uildm.org/archivio_dm/156/scienza/37conteweb.shtml . 4 March 2016 .
- Nigro G . One-hundred-seventy-five years of Neapolitan contributions to the fight against the muscular diseases . Acta Myologica . 29 . 3 . 369–391 . December 2010 . 21574522 . 3146338 .
- Web site: Duchenne muscular dystrophy . Medterms.com . 27 April 2011 . 16 February 2013 . live . https://web.archive.org/web/20120806222735/http://www.medterms.com/script/main/art.asp?articlekey=11686 . 6 August 2012 .
- Web site: What You Didn't Know About the Ferrari Family . Susanna Kim . 21 October 2015 . ABC News . 31 August 2023 . 31 August 2023 . https://web.archive.org/web/20230831063328/https://abcnews.go.com/Business/ferrari-family/story?id=34626955 . live .
- Web site: How Did Dino Ferrari Die? . The GearShifters Team . 13 September 2022 . GearShifters . 31 August 2023 . 31 August 2023 . https://web.archive.org/web/20230831063316/https://gearshifters.org/ferrari/how-did-dino-ferrari-die/ . live .
- Web site: Darius Weems' Next Chapter: Rap Star With Duchenne Muscular Dystrophy Tries Clinical Trial . Cynthia. McFadden. Eric. Johnson. Lauren. Effron. . 22 November 2012 . 29 June 2016 . live . https://web.archive.org/web/20160805211715/https://abcnews.go.com/Health/darius-weems-chapter-rap-star-duchenne-muscular-dystrophy/story?id=17779732 . 5 August 2016 .
- Web site: Disability Rights Activist Darius Weems Loses Battle with Duchenne Muscular Dystrophy . Eric Johnson . 10 October 2016 . ABC News . 31 August 2023 . 31 August 2023 . https://web.archive.org/web/20230831065221/https://abcnews.go.com/Health/disability-rights-activist-darius-weems-loses-battle-duchenne/story?id=42708683 . live .
- Web site: Berkshire G . Sundance Film Review: 'The Fundamentals of Caring' . Variety . 21 October 2021 . 23 January 2016 . 21 October 2021 . https://web.archive.org/web/20211021230638/https://variety.com/2016/film/reviews/the-fundamentals-of-caring-film-review-sundance-1201686813/ . live .
- Guiraud S, Davies KE . Pharmacological advances for treatment in Duchenne muscular dystrophy . Current Opinion in Pharmacology . 34 . 36–48 . June 2017 . 28486179 . 10.1016/j.coph.2017.04.002 . free . doi .
- Allen DG, Gervasio OL, Yeung EW, Whitehead NP . Calcium and the damage pathways in muscular dystrophy . Canadian Journal of Physiology and Pharmacology . 88 . 2 . 83–91 . February 2010 . 20237582 . 10.1139/Y09-058 .
- Scoto M, Finkel R, Mercuri E, Muntoni F . Genetic therapies for inherited neuromuscular disorders . The Lancet. Child & Adolescent Health . 2 . 8 . 600–609 . August 2018 . 30119719 . 10.1016/S2352-4642(18)30140-8 . 52032568 . 16 November 2022 . 17 August 2021 . https://web.archive.org/web/20210817173451/https://discovery.ucl.ac.uk/id/eprint/10055445/ . live .
- Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G . Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides . Human Molecular Genetics . 7 . 7 . 1083–1090 . July 1998 . 9618164 . 10.1093/hmg/7.7.1083 . free . doi .
- Finkel RS . Read-through strategies for suppression of nonsense mutations in Duchenne/ Becker muscular dystrophy: aminoglycosides and ataluren (PTC124) . Journal of Child Neurology . 25 . 9 . 1158–1164 . September 2010 . 20519671 . 3674569 . 10.1177/0883073810371129 .
- FDA grants accelerated approval to first drug for Duchenne muscular dystrophy . U.S. Food and Drug Administration (FDA) . 19 September 2016 . 12 December 2016 . live . https://web.archive.org/web/20161211184800/https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm . 11 December 2016 .
- England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaarn EE, Bulman DE, Harris JB, Davies KE . Very mild muscular dystrophy associated with the deletion of 46% of dystrophin . Nature . 343 . 6254 . 180–182 . January 1990 . 2404210 . 10.1038/343180a0 . 4349360 . 1990Natur.343..180E .
- Dominski Z, Kole R . Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides . Proceedings of the National Academy of Sciences of the United States of America . 90 . 18 . 8673–8677 . September 1993 . 8378346 . 47420 . 10.1073/pnas.90.18.8673 . free . doi . 1993PNAS...90.8673D .
- Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R . Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients . Proceedings of the National Academy of Sciences of the United States of America . 97 . 17 . 9591–9596 . August 2000 . 10944225 . 16909 . 10.1073/pnas.97.17.9591 . free . doi . 2000PNAS...97.9591L .
- Suwanmanee T, Sierakowska H, Lacerra G, Svasti S, Kirby S, Walsh CE, Fucharoen S, Kole R . Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides . Molecular Pharmacology . 62 . 3 . 545–553 . September 2002 . 12181431 . 10.1124/mol.62.3.545 .
- Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R . Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides . Neuromuscular Disorders . 9 . 5 . 330–338 . July 1999 . 10407856 . 10.1016/S0960-8966(99)00010-3 . 20678312 .
- Wilton SD, Fall AM, Harding PL, McClorey G, Coleman C, Fletcher S . Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript . Molecular Therapy . 15 . 7 . 1288–1296 . July 2007 . 17285139 . 10.1038/sj.mt.6300095 . free . doi .
- Long C, Li H, Tiburcy M, Rodriguez-Caycedo C, Kyrychenko V, Zhou H, Zhang Y, Min YL, Shelton JM, Mammen PP, Liaw NY, Zimmermann WH, Bassel-Duby R, Schneider JW, Olson EN . Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing . Science Advances . 4 . 1 . eaap9004 . January 2018 . 29404407 . 5796795 . 10.1126/sciadv.aap9004 . 2018SciA....4.9004L .
- Cohen J . 30 August 2018. Gene editing of dogs offers hope for treating human muscular dystrophy . Science . 10.1126/science.aav2676 . 92204241.
- Patmanathan SN, Gnanasegaran N, Lim MN, Husaini R, Fakiruddin KS, Zakaria Z . CRISPR/Cas9 in Stem Cell Research: Current Application and Future Perspective . Current Stem Cell Research & Therapy . 13 . 8 . 632–644 . 2018 . 29895256 . 10.2174/1574888X13666180613081443 . 48357156 .
- Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN . Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA . Science . 345 . 6201 . 1184–1188 . September 2014 . 25123483 . 4398027 . 10.1126/science.1254445 . 2014Sci...345.1184L .
- News: Wade N . Gene Editing Offers Hope for Treating Duchenne Muscular Dystrophy, Studies Find. 1 January 2016. The New York Times. 31 December 2015. live. https://web.archive.org/web/20160102195733/http://www.nytimes.com/2016/01/01/science/gene-therapy-muscular-dystrophy.html?_r=0. 2 January 2016.
- Rodino-Klapac LR, Chicoine LG, Kaspar BK, Mendell JR . Gene therapy for duchenne muscular dystrophy: expectations and challenges . Archives of Neurology . 64 . 9 . 1236–1241 . September 2007 . 17846262 . 10.1001/archneur.64.9.1236 . free . doi .
- Khurdayan VK, Bozzo J, Prous JR . Chronicles in drug discovery . Drug News & Perspectives . 18 . 8 . 517–522 . October 2005 . 16391721 . 10.1358/dnp.2005.18.8.953409 .
- Web site: NINDS Muscular Dystrophy Information Page. NINDS. 12 September 2016. 4 March 2016. https://web.archive.org/web/20160730004520/http://www.ninds.nih.gov/disorders/md/md.htm. 30 July 2016.