Driving simulator explained

Driving simulators are used for entertainment as well as in training of driver's education courses taught in educational institutions and private businesses. They are also used for research purposes in the area of human factors and medical research, to monitor driver behavior, performance, and attention and in the car industry to design and evaluate new vehicles or new advanced driver assistance systems.

Training

Driving simulators are being increasingly used for training drivers. Versions exist for cars, trucks, buses, etc.

Uses

Types

Entertainment

See main article: Racing game and Sim racing.

In the 1980s, it became a trend for arcade racing games to use hydraulic motion simulator arcade cabinets.[1] [2] The trend was sparked by Sega's "taikan" games, with "taikan" meaning "body sensation" in Japanese.[2] The "taikan" trend began when Yu Suzuki's team at Sega (later known as Sega AM2) developed Hang-On (1985), a racing video game where the player sits on and moves a motorbike replica to control the in-game actions.[3] Suzuki's team at Sega followed it with hydraulic motion simulator cockpit cabinets for later racing games such as Out Run (1986). Sega have since continued to manufacture motion simulator cabinets for arcade racing games through to the 2010s.[1]

In 1991, Namco released the arcade game Mitsubishi Driving Simulator, co-developed with Mitsubishi. It was a serious educational street driving simulator that used 3D polygon technology and a sit-down arcade cabinet to simulate realistic driving, including basics such as ensuring the car is in neutral or parking position, starting the engine, placing the car into gear, releasing the hand-brake, and then driving. The player can choose from three routes while following instructions, avoiding collisions with other vehicles or pedestrians, and waiting at traffic lights; the brakes are accurately simulated, with the car creeping forward after taking the foot off the brake until the hand-brake is applied. Leisure Line magazine considered it the "hit of the show" upon its debut at the 1991 JAMMA show. It was designed for use by Japanese driving schools, with a very expensive cost of AU$150,000 or per unit.[4]

Advances in processing power have led to more realistic simulators known as sim racing games on home systems, beginning with Papyrus Design Group's groundbreaking IndyCar Racing (1993) and Grand Prix Legends (1998) for PC and Gran Turismo (1997) for home consoles.

Occasionally, a racing game or driving simulator will also include an attachable steering wheel that can be used to play the game in place of a controller. The wheel, which is usually plastic, may also include pedals to add to the game's reality. These wheels are usually used only for arcade and computer games.

In addition to the myriad commercial releases there is a bustling community of amateur coders working on closed and open source free simulators. Some of the major features popular with fans of the genre are online racing, realism and diversity of cars and tracks.

Research

Driving simulators are used at research facilities for many purposes. Many vehicle manufacturers operate driving simulators, e.g. BMW, Ford, Renault. Many universities also operate simulators for research. Driving simulators allow researchers to study driver training issues and driver behavior under conditions in which it would be illegal and/or unethical to place drivers. For instance, studies of driver distraction would be dangerous and unethical (because of the inability to obtain informed consent from other drivers) to do on the road.

With the increasing use of various in-vehicle information systems (IVIS) such as satellite navigation systems, cell phones, DVD players and e-mail systems, simulators are playing an important rule in assessing the safety and utility of such devices.

Fidelity

There exists a number of types research driving simulators, with a wide range of capabilities. The most complex, like the National Advanced Driving Simulator, have a full-sized vehicle body, with six-axis movement and 360-degree visual displays. On the other end of the range are simple desktop simulators that are often implemented using a computer monitor for the visual display and a videogame-type steering wheel and pedal input devices. These low cost simulators are used readily in the evaluation of basic and clinically oriented scientific questions.[5] [6] [7] [8] [9] [10] The issue is complicated by political and economic factors, as facilities with low-fidelity simulators claim their systems are "good enough" for the job, while the high-fidelity simulator groups insist that their (considerably more expensive) systems are necessary. Research into motion fidelity indicates that, while some motion is necessary in a research driving simulator, it does not need to have enough range to match real-world forces.[11] Recent research has also considered the use of the real-time photo-realistic video content that reacts dynamically to driver behaviour in the environment.[12]

Validity

There is a question of validity—whether results obtained in the simulator are applicable to real-world driving. One review of research studies found that driver behavior on a driving simulator approximates (relative validity) but does not exactly replicate (absolute validity) on-road driving behavior.[13] Another study found absolute validity for the types and number of driver errors committed on a simulator and on the road.[14] Yet another study found that drivers who reported impaired performance on a low fidelity driving simulator were significantly more likely to take part in an accident in which the driver was at least partially at fault, within five years after the simulator session.[15] Some research teams are using automated vehicles to recreate simulator studies on a test track, enabling a more direct comparison between the simulator study and the real world.[16] As computers have grown faster and simulation is more widespread in the automotive industry, commercial vehicle math models that have been validated by manufacturers are seeing use in simulators.

See also

Notes and References

  1. News: Sega's Wonderful Simulation Games Over The Years . 22 April 2021 . Arcade Heroes . 6 June 2013.
  2. Book: Horowitz . Ken . The Sega Arcade Revolution: A History in 62 Games . 6 July 2018 . . 978-1-4766-3196-7 . 96–9 .
  3. News: The Disappearance of Yu Suzuki: Part 1 . https://web.archive.org/web/20160602020545/www.1up.com/features/disappearance-suzuki-part-1?pager.offset=1 . 22 April 2021 . . 2010 . 2 . dead . 2016-06-02.
  4. Japanese JAMMA Show . Leisure Line . November 1991 . 5 . Leisure & Allied Industries . Australia .
  5. Li, Z., & Milgram, P. (2005). An Investigation of the Potential to Influence Braking Behaviour Through Manipulation of Optical Looming Cues in a Simulated Driving Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 49(17), 1540–1544.
  6. Matthews, R. W., Ferguson, S. A., Zhou, X., Sargent, C., Darwent, D., Kennaway, D. J., & Roach, G. D. (2012). Time-of-Day Mediates the Influences of Extended Wake and Sleep. Chronobiology International, 29(5): 572–579
  7. Baulk, S. D., Biggs, S. N., Reid, K. J., van den Heuvel, C. J., & Dawson, D. (2008). Chasing the silver bullet: Measuring driver fatigue using simple and complex tasks. Accident Analysis & Prevention, 40(1), 396–402.
  8. Telner, J. A., Wiesenthal, D. L., & Bialystok, E. (2009). Video Gamer Advantages in a Cellular Telephone and Driving Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53(23), 1748–1752.
  9. Telner, J. A. (2008). The effects of linguistic fluency on performance in a simulated cellular telephone and driving situation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 1748–1752.
  10. Rapoport, M. J., Weaver, B., Kiss, A., Zucchero Sarracini, C., Moller, H., Herrmann, N., Lanctôt, K., et al. (2011). The Effects of Donepezil on Computer-Simulated Driving Ability Among Healthy Older Adults: A Pilot Study. Journal of clinical psychopharmacology, 31(5), 587.
  11. Greenberg J., Artz B., Cathey L. The Effect of Lateral Motion Cues During Simulated Driving. Driving Simulator Conference North America 2003 Proceedings, Dearborn, Michigan, October 8–10, 2003, CD-ROM (ISSN 1546-5071)
  12. Book: Heras, A.M. . Breckon, T.P. . Tirovic, M. . Video Re-sampling and Content Re-targeting for Realistic Driving Incident Simulation . Proc. 8th European Conference on Visual Media Production . November 2011 . sp-2 . 8 April 2013 .
  13. Mullen, Nadia. Charlton, Judith, Devlin, Anna, and; Bédard, Michel (2011). Chapter 13: Simulator Validity: Behaviors Observed on the Simulator and on the Road. Handbook of Driving Simulation for Engineering, Medicine, and Psychology D. L. Fisher, Rizzo, M., Caird, Jeff K., and Lee, John D. (eds.). Boca Raton, FL, CRC Press/Taylor & Francis
  14. Shechtman, Orit, Classen, Sherrilene, Awadzi, Kezia, Mann, William (2009). "Comparison of Driving Errors Between On-the-Road and Simulated Driving Assessment: A Validation Study." Traffic Injury Prevention 10(4): 379-385
  15. Hoffman, L., & McDowd, J. M. (2010). Simulator driving performance predicts accident reports five years later. Psychology and Aging, 25(3), 741-745
  16. "Program develops new test track capability ". ITS Sensor. Winter 2004. Retrieved on February 14, 2007