In mathematics, a double vector bundle is the combination of two compatible vector bundle structures, which contains in particular the tangent
TE
E
T2M
A double vector bundle consists of
(E,EH,EV,B)
EH
EV
B
E
EH
EV
A double vector bundle morphism
(fE,fH,fV,fB)
fE:E\mapstoE'
fH:EH\mapstoEH{}'
fV:EV\mapstoEV{}'
fB:B\mapstoB'
(fE,fV)
(E,EV)
(E',EV{}')
(fE,fH)
(E,EH)
(E',EH{}')
(fV,fB)
(EV,B)
(EV{}',B')
(fH,fB)
(EH,B)
(EH{}',B')
The flip of the double vector bundle
(E,EH,EV,B)
(E,EV,EH,B)
If
(E,M)
M
(TE,E,TM,M)
If
M
(TTM,TM,TM,M)