In mathematics, the multiple gamma function
\GammaN
Double gamma functions
\Gamma2
\Gamma3
For
\Reai>0
\GammaN(w\mida1,\ldots,aN)=\exp\left(\left.
\partial | |
\partials |
\zetaN(s,w\mida1,\ldots,aN)\right|s=0\right) ,
where
\zetaN
Considered as a meromorphic function of
w
\GammaN(w\mida1,\ldots,aN)
w=
N | |
-\sum | |
i=1 |
niai
ni
\GammaN(w\mida1,\ldots,aN)
\Gamma0(w\mid)=
1 | |
w |
,
\Gamma1(w\mida)=
| ||||||||||||||
\sqrt{2\pi |
\GammaN(w\mida1,\ldots,aN)=\GammaN-1(w\mida1,\ldots,aN-1)\GammaN(w+aN\mida1,\ldots,aN) .
In the case of the double Gamma function, the asymptotic behaviour for
w\toinfty
\Gamma2(w|a1,a2) \underset{w\to
| ||||
infty}{\sim} w |
for \left\{\begin{array}{l}
a1 | |
a2 |
\inC\backslash(-infty,0] , \ w\inC\backslash\left(R+a1+R+a2\right) .\end{array}\right.
The multiple gamma function has an infinite product representation that makes it manifest that it is meromorphic, and that also makes the positions of its poles manifest. In the case of the double gamma function, this representation is [1]
\Gamma2(w\mida1,a2)=
| |||||
w |
\prod\begin{array{c}(n1,n
2\ (n | |
1,n |
2) ≠ (0,0)\end{array}}
| |||||||||||||||||||||||||||
|
,
w
λ1=-\underset{s=1}{\operatorname{Res}0}\zeta2(s,0\mida1,a2) ,
λ2=
12\underset{s=2}{\operatorname{Res} | |
0}\zeta |
2(s,0\mida1,a2)+
12 | |
\underset{s=2}{\operatorname{Res} |
1}\zeta2(s,0\mida1,a2) ,
\underset{s=s0}{\operatorname{Res}n}f(s)=
1 | |
2\pii |
\oint | |
s0 |
n-1 | |
(s-s | |
0) |
f(s)ds
n
s0
Another representation as a product over
N
The double gamma function with parameters
1,1
\Gamma2(w+1|1,1)=
\sqrt{2\pi | |
\Gamma2(w|\alpha,\alpha)=
| ||||
(2\pi) |
| ||||||||
\alpha |
G(w/\alpha)-1 .
For
\Reb>0
Q=b+b-1
\Gammab(w)=
\Gamma2(w\midb,b-1) | |||||||||
|
,
is invariant under
b\tob-1
\Gammab(w+b)=\sqrt{2\pi}
| ||||||||
\Gamma(bw) |
\Gammab(w) ,
-1 | |
\Gamma | |
b(w+b |
)=\sqrt{2\pi}
| ||||||||||||||
\Gamma(b-1w) |
\Gammab(w) .
For
\Rew>0
log\Gammab(w)=
| |||||
\int | \left[ | ||||
0 |
| - | |||||||||||||||
|
| |||||
2 |
e-t-
| |||||
t |
\right] .
From the function
\Gammab(w)
Sb(w)
\Upsilonb(w)
Sb(w)=
\Gammab(w) | |
\Gammab(Q-w) |
,
\Upsilon | ||||
|
.
These functions obey the relations
Sb(w+b)=2\sin(\pibw)Sb(w) ,
\Upsilon | ||||
|
b1-2bw\Upsilonb(w) ,
plus the relations that are obtained by
b\tob-1
0<\Rew<\ReQ
logSb(w)=
| |||||
\int | \left[ | ||||
0 |
| - | ||||||
|
Q-2w | |
t |
\right] ,
log\Upsilonb(w)=
| |||||
\int | \left[\left( | ||||
0 |
Q | |
2 |
-w\right)2e-t-
| |||||||||||
|
\right] .
The functions
\Gammab,Sb
\Upsilonb
b
\Upsilonb