In mathematics, a double Mersenne number is a Mersenne number of the form
M | |
Mp |
=
2p-1 | |
2 |
-1
where p is prime.
The first four terms of the sequence of double Mersenne numbers are[1] :
M | |
M2 |
=M3=7
M | |
M3 |
=M7=127
M | |
M5 |
=M31=2147483647
M | |
M7 |
=M127=170141183460469231731687303715884105727
Double Mersenne primes | |
Terms Number: | 4 |
Con Number: | 4 |
First Terms: | 7, 127, 2147483647 |
Largest Known Term: | 170141183460469231731687303715884105727 |
Oeis: | A077586 |
Oeis Name: | a(n) = 2^(2^prime(n) − 1) − 1 |
A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number
M | |
Mp |
M | |
Mp |
M | |
Mp |
p | Mp=2p-1 |
=
-1 | factorization of
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | prime | 7 | |||||||||||||
3 | prime | 127 | |||||||||||||
5 | prime | 2147483647 | |||||||||||||
7 | prime | 170141183460469231731687303715884105727 | |||||||||||||
11 | not prime | not prime | 47 × 131009 × 178481 × 724639 × 2529391927 × 70676429054711 × 618970019642690137449562111 × ... | ||||||||||||
13 | not prime | 338193759479 × 210206826754181103207028761697008013415622289 × ... | |||||||||||||
17 | not prime | 231733529 × 64296354767 × ... | |||||||||||||
19 | not prime | 62914441 × 5746991873407 × 2106734551102073202633922471 × 824271579602877114508714150039 × 65997004087015989956123720407169 × 4565880376922810768406683467841114102689 × ... | |||||||||||||
23 | not prime | not prime | 2351 × 4513 × 13264529 × 76899609737 × ... | ||||||||||||
29 | not prime | not prime | 1399 × 2207 × 135607 × 622577 × 16673027617 × 4126110275598714647074087 × ... | ||||||||||||
31 | not prime | 295257526626031 × 87054709261955177 × 242557615644693265201 × 178021379228511215367151 × ... | |||||||||||||
37 | not prime | not prime | |||||||||||||
41 | not prime | not prime | |||||||||||||
43 | not prime | not prime | |||||||||||||
47 | not prime | not prime | |||||||||||||
53 | not prime | not prime | |||||||||||||
59 | not prime | not prime | |||||||||||||
61 | unknown |
Thus, the smallest candidate for the next double Mersenne prime is
M | |
M61 |
Smallest prime factor of
M | |
Mp |
7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036)
The recursively defined sequence
c0=2
cn+1=
cn | |
2 |
-1=
M | |
cn |
c0=2
c1=22-1=3
c2=23-1=7
c3=27-1=127
c4=2127-1=170141183460469231731687303715884105727
c5=2170141183460469231731687303715884105727-1 ≈ 5.45431 x 1051217599719369681875006054625051616349 ≈
1037.70942 | |
10 |
M127=c4
c5
c5
p
p
c5
c5
p
2kc4+1
2n-1
n
If
c5
| |||||||
3 |
886407410000361345663448535540258622490179142922169401=5209834514912200c4+1
In the Futurama movie The Beast with a Billion Backs, the double Mersenne number
M | |
M7 |