Distributive law between monads explained
In category theory, an abstract branch of mathematics, distributive laws between monads are a way to express abstractly that two algebraic structures distribute one over the other.
Suppose that
and
are two monads on a
category C. In general, there is no natural monad structure on the composite
functor ST. However, there is a natural monad structure on the functor
ST if there is a distributive law of the monad
S over the monad
T.
Formally, a distributive law of the monad S over the monad T is a natural transformation
such that the diagrams
commute.
This law induces a composite monad ST with
STST\xrightarrow{SlT}SSTT\xrightarrow{\muS\muT}ST
,
.
See also
References
- Book: Beck
, Jon . Jonathan Mock Beck . 1969 . Distributive laws . Seminar on Triples and Categorical Homology Theory, ETH 1966/67 . Lecture Notes in Mathematics . 80 . 119–140 . 10.1007/BFb0083084 . 978-3-540-04601-1 .
- Book: Michael Barr (mathematician) . Michael . Barr . Charles . Wells . Toposes, Triples and Theories . . 1985 . 0-387-96115-1 . dead . https://web.archive.org/web/20110514231306/http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf . 2011-05-14.
- Book: Böhm, G. . Internal bialgebroids, entwining structures and corings . Algebraic Structures and Their Representations . Contemporary Mathematics . 376 . 2005 . 9780821836309 . 207–226 . math.QA/0311244.
- T. . Brzeziński . S. . Majid . Coalgebra bundles . Comm. Math. Phys. . 191 . 2 . 467–492 . 1998 . 10.1007/s002200050274 . q-alg/9602022. 1998CMaPh.191..467B . 189829500 .
- Book: Tomasz . Brzezinski . Robert . Wisbauer . Corings and Comodules . 2003 . Cambridge University Press . 978-0-521-53931-9 . 309 . London Mathematical Society Lecture Note Series.
- Book: T.F. . Fox . M. . Markl . Distributive laws, bialgebras, and cohomology . Operads: Proceedings of Renaissance Conferences . 1997 . 9780821805138 . 167–205 . American Mathematical Society . Contemporary Mathematics . 202.
- S. . Lack . Composing PROPS . Theory Appl. Categ. . 13 . 9 . 147–163 . 2004 .
- S. . Lack . R. . Street . The formal theory of monads II . J. Pure Appl. Algebra . 175 . 1–3 . 243–265 . 2002 . 10.1016/S0022-4049(02)00137-8 .
- M. . Markl . Distributive laws and Koszulness . Annales de l'Institut Fourier . 46 . 2 . 307–323 . 1996 . 10.5802/aif.1516 . 0853.18005 . free . hep-th/9409192 .
- R. . Street . The formal theory of monads . J. Pure Appl. Alg. . 2 . 2 . 149–168 . 1972 . 10.1016/0022-4049(72)90019-9 .
- Z. . Škoda . Distributive laws for monoidal categories . 2004 . math/0406310.
- 1 . Z. . Škoda . Equivariant monads and equivariant lifts versus a 2-category of distributive laws . 0707.1609. 2007 . math.CT .
- 1 . Z. . Škoda . Bicategory of entwinings . 0805.4611. 2008 . math.RA .
- 1 . Z. . Škoda . Some equivariant constructions in noncommutative geometry . Georgian Math. J. . 16 . 1 . 183–202 . 2009 . 10.1515/GMJ.2009.183 . 0811.4770. 121946556 .
- R. . Wisbauer . Algebras versus coalgebras . Appl. Categ. Structures . 16 . 1–2 . 255–295 . 2008 . 10.1007/s10485-007-9076-5 . 8150337 .