Dissipative soliton explained

Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.

Apart from aspects similar to the behavior of classical particles like the formation of bound states, DSs exhibit interesting behavior  - e.g. scattering, creation and annihilation  - all without the constraints of energy or momentumconservation. The excitation of internal degrees of freedom may result in a dynamically stabilized intrinsic speed, or periodic oscillations of the shape.

Historical development

Origin of the soliton concept

DSs have been experimentally observed for a long time. Helmholtz[1] measured the propagation velocity of nerve pulses in1850. In 1902, Lehmann[2] found the formation of localized anodespots in long gas-discharge tubes. Nevertheless, the term"soliton" was originally developed in a different context. Thestarting point was the experimental detection of "solitarywater waves" by Russell in 1834.[3] These observations initiated the theoretical work ofRayleigh[4] and Boussinesq[5] around1870, which finally led to the approximate description of suchwaves by Korteweg and de Vries in 1895; that description is known today as the (conservative)KdV equation.[6]

On this background the term "soliton" wascoined by Zabusky and Kruskal[7] in 1965. Theseauthors investigated certain well localised solitary solutionsof the KdV equation and named these objects solitons. Amongother things they demonstrated that in 1-dimensional spacesolitons exist, e.g. in the form of two unidirectionallypropagating pulses with different size and speed and exhibiting theremarkable property that number, shape and size are the samebefore and after collision.

Gardner et al.[8] introduced the inverse scattering techniquefor solving the KdV equation and proved that this equation iscompletely integrable. In 1972 Zakharov andShabat[9] found another integrable equation andfinally it turned out that the inverse scattering technique canbe applied successfully to a whole class of equations (e.g. thenonlinear Schrödinger andsine-Gordon equations). From 1965up to about 1975, a common agreement was reached: to reserve the term soliton topulse-like solitary solutions of conservative nonlinear partialdifferential equations that can be solved by using the inversescattering technique.

Weakly and strongly dissipative systems

With increasing knowledge of classical solitons, possibletechnical applicability came into perspective, with the mostpromising one at present being the transmission of opticalsolitons via glass fibers for the purpose ofdata transmission. In contrast to conservative systems, solitons in fibers dissipate energy andthis cannot be neglected on an intermediate and long timescale. Nevertheless, the concept of a classical soliton canstill be used in the sense that on a short time scaledissipation of energy can be neglected. On an intermediate timescale one has to take small energy losses into account as aperturbation, and on a long scale the amplitude of the solitonwill decay and finally vanish.[10]

There are however various types of systems which are capable ofproducing solitary structures and in which dissipation plays anessential role for their formation and stabilization. Althoughresearch on certain types of these DSs has been carried out fora long time (for example, see the research on nerve pulses culminatingin the work of Hodgkin and Huxley[11] in 1952), since1990 the amount of research has significantly increased (see e.g.[12] [13] [14] [15])Possible reasons are improved experimental devices andanalytical techniques, as well as the availability of morepowerful computers for numerical computations. Nowadays, it iscommon to use the term dissipative solitons for solitary structures instrongly dissipative systems.

Experimental observations

Today, DSs can be found in many differentexperimental set-ups. Examples include

Remarkably enough, phenomenologically the dynamics of the DSs in many of the above systems are similar in spite of the microscopic differences. Typical observations are (intrinsic) propagation, scattering, formation of bound states and clusters, drift in gradients, interpenetration, generation, and annihilation, as well as higher instabilities.

Theoretical description

Most systems showing DSs are described by nonlinearpartial differential equations. Discrete difference equations andcellular automata are also used. Up to now,modeling from first principles followed by a quantitativecomparison of experiment and theory has been performed onlyrarely and sometimes also poses severe problems because of largediscrepancies between microscopic and macroscopic time andspace scales. Often simplified prototype models areinvestigated which reflect the essential physical processes ina larger class of experimental systems. Among these are

\partialt\boldsymbol{q}=\underline{\boldsymbol{D}}\Delta\boldsymbol{q}+\boldsymbol{R}(\boldsymbol{q}).

A frequently encountered example is the two-component Fitzhugh–Nagumo-type activator–inhibitor system

\left(\begin{array}{c}\tauu\partialtu\\ \tauv\partialtv \end{array}\right)= \left(\begin{array}{cc}

2
d
u

&0\ 0&

2 \end{array}\right) \left(
d
v

\begin{array}{c}\Deltau\\ \Deltav\end{array}\right)+\left(\begin{array}{c}λu-u3-\kappa3v+\kappa1\\u-v \end{array}\right).

Stationary DSs are generated by production of material in the center of the DSs, diffusive transport into the tails and depletion of material in the tails. A propagating pulse arises from production in the leading and depletion in the trailing end.[44] Among other effects, one finds periodic oscillations of DSs ("breathing"),[45] [46] bound states,[47] and collisions, merging, generation and annihilation.[48]

\partialtq=(dr+idi)\Deltaq+\ellrq+(cr+ici)|q|2q+(qr+iqi)|q|4q.

To understand the mechanisms leading to the formation of DSs, one may consider the energy ρ = |q|2 for which one may derive the continuity equation

\begin{align} &\partialt\rho+\nabla\boldsymbol{m}=S=dr(q\Deltaq\ast+q\ast\Deltaq)+2\ellr\rho+2cr\rho2+2qr\rho3\\ &with\boldsymbol{m}=2di\operatorname{Im}(q\ast\nablaq). \end{align}

One can thereby show that energy is generally produced in the flanks of the DSs and transported to the center and potentially to the tails where it is depleted. Dynamical phenomena include propagating DSs in 1d,[50] propagating clusters in 2d,[51] bound states and vortex solitons,[52] as well as "exploding DSs".[53]

\partialtq=(sr+isi)\Delta2q+(dr+idi)\Deltaq+\ellrq+(cr+i

2
c
i)|q|

q+(qr+iqi)|q|4q.

For dr > 0 one essentially has the same mechanisms as in the Ginzburg–Landau equation.[54] For dr < 0, in the real Swift–Hohenberg equation one finds bistability between homogeneous states and Turing patterns. DSs are stationary localized Turing domains on the homogeneous background.[55] This also holds for the complex Swift–Hohenberg equations; however, propagating DSs as well as interaction phenomena are also possible, and observations include merging and interpenetration.[56]

Particle properties and universality

DSs in many different systems show universal particle-likeproperties. To understand and describe the latter, one may tryto derive "particle equations" for slowly varying orderparameters like position, velocity or amplitude of the DSs byadiabatically eliminating all fast variables in the fielddescription. This technique is known from linear systems,however mathematical problems arise from the nonlinear modelsdue to a coupling of fast and slow modes.[57]

Similar to low-dimensional dynamic systems, for supercriticalbifurcations of stationary DSs one finds characteristic normalforms essentially depending on the symmetries of the system.E.g., for a transition from a symmetric stationary to anintrinsically propagating DS one finds the Pitchfork normalform

\boldsymbol{v
} = (\sigma - \sigma_0) \boldsymbol - |\boldsymbol|^2 \boldsymbol

for the velocity v of the DS,[58] here σrepresents the bifurcation parameter and σ0the bifurcation point. For a bifurcation to a "breathing" DS,one finds the Hopf normal form

A

=(\sigma-\sigma0)A-|A|2A

for the amplitude A of the oscillation.[46] It is also possible to treat "weak interaction"as long as the overlap of the DSs is not too large.[59] In this way, acomparison between experiment and theory is facilitated.[60] [61] Note that the above problems do not arise for classicalsolitons as inverse scattering theory yields completeanalytical solutions.

See also

References

Books and overview articles

Notes and References

  1. H. . Helmholtz. Hermann von Helmholtz. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin . 57 . 1850. 276. Messungen über den zeitlichen Verlauf der Zuckung animalischer Muskeln und die Fortpflanzungsgeschwindigkeit der Reizung in den Nerven. de.
  2. Lehmann . O. . Otto Lehmann (physicist). Gasentladungen in weiten Gefässen . Annalen der Physik . Wiley . 312 . 1 . 1902 . 0003-3804 . 10.1002/andp.19013120102 . 1–28. de.
  3. J.S. Russell, Report of the fourteenth meeting of the BritishAssociation for the Advancement of Science (1845): 311
  4. J. W.. Rayleigh. John William Strutt, 3rd Baron Rayleigh. XXXII. On waves . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Informa UK Limited . 1 . 4 . 1876 . 1941-5982 . 10.1080/14786447608639037 . 257–279.
  5. J.. Boussinesq. Joseph Valentin Boussinesq. Comptes rendus hebdomadaires des séances de l'Académie des sciences . 72. 1871. 755. fr. Hydrodynamique - Théorie de l'inlumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire.
  6. Korteweg . D. J. . de Vries . G. . XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Informa UK Limited . 39 . 240 . 1895 . 1941-5982 . 10.1080/14786449508620739 . 422–443.
  7. Zabusky . N. J. . Kruskal . M. D. . Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States . Physical Review Letters . American Physical Society . 15 . 6 . 9 August 1965 . 0031-9007 . 10.1103/physrevlett.15.240 . 240–243. 1965PhRvL..15..240Z . free .
  8. Gardner . Clifford S. . Greene . John M. . Kruskal . Martin D. . Miura . Robert M. . Method for Solving the Korteweg-deVries Equation . Physical Review Letters . American Physical Society . 19 . 19 . 6 November 1967 . 0031-9007 . 10.1103/physrevlett.19.1095 . 1095–1097. 1967PhRvL..19.1095G .
  9. Zakharov . V. E. . Shabat . A. B. . A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I . Functional Analysis and Its Applications . Springer Science and Business Media . 8 . 3 . 1975 . 0016-2663 . 10.1007/bf01075696 . 226–235. 120856178 .
  10. Book: Kivshar . Y. S. . Agrawal. G. P.. Optical solitons : from fibers to photonic crystals . Academic Press . Amsterdam Boston . 2003 . 978-0-12-410590-4 . 162129411 .
  11. Hodgkin . A. L. . Huxley . A. F. . A quantitative description of membrane current and its application to conduction and excitation in nerve . The Journal of Physiology . Wiley . 117 . 4 . 28 August 1952 . 0022-3751 . 10.1113/jphysiol.1952.sp004764 . 12991237 . 1392413 . 500–544. free.
  12. Book: Kerner . B. S. . Osipov. V. V.. Autosolitons : a new approach to problems of self-organization and turbulence . Kluwer Academic . Dordrecht Boston . 1994 . 978-0-7923-2816-2 . 30157395 . 53.
  13. Bode . M. . Purwins . H.-G. . Pattern formation in reaction-diffusion systems - dissipative solitons in physical systems . Physica D: Nonlinear Phenomena . Elsevier BV . 86 . 1–2 . 1995 . 0167-2789 . 10.1016/0167-2789(95)00087-k . 53–63. 1995PhyD...86...53B .
  14. Christov . C.I. . Velarde . M.G. . Dissipative solitons . Physica D: Nonlinear Phenomena . Elsevier BV . 86 . 1–2 . 1995 . 0167-2789 . 10.1016/0167-2789(95)00111-g . 323–347. 1995PhyD...86..323C .
  15. Book: Akhmediev . Nail . Ankiewicz . Adrian . Lecture Notes in Physics . Dissipative Solitons . Springer Berlin Heidelberg . Berlin, Heidelberg . 2005 . 978-3-540-23373-2 . 0075-8450 . 10.1007/b11728 . 661. 218646243 .
  16. Radehaus . Ch. . Dirksmeyer . T. . Willebrand . H. . Purwins . H.-G. . Pattern formation in gas discharge systems with high impedance electrodes . Physics Letters A . Elsevier BV . 125 . 2–3 . 1987 . 0375-9601 . 10.1016/0375-9601(87)90128-9 . 92–94. 1987PhLA..125...92R .
  17. Brauer . I. . Bode . M. . Ammelt . E. . Purwins . H.-G. . Traveling Pairs of Spots in a Periodically Driven Gas Discharge System: Collective Motion Caused by Interaction . Physical Review Letters . American Physical Society . 84 . 18 . 1 April 2000 . 0031-9007 . 10.1103/physrevlett.84.4104 . 10990621 . 4104–4107. 2000PhRvL..84.4104B .
  18. Rubens . Sidney M. . Henderson . J. E. . The Characteristics and Function of Anode Spots in Glow Discharges . Physical Review . American Physical Society . 58 . 5 . 1 August 1940 . 0031-899X . 10.1103/physrev.58.446 . 446–457. 1940PhRv...58..446R .
  19. Nasuno . Satoru . Dancing "atoms" and "molecules" of luminous gas-discharge spots . Chaos: An Interdisciplinary Journal of Nonlinear Science . AIP Publishing . 13 . 3 . 2003 . 1054-1500 . 10.1063/1.1604271 . 1010–1013. 12946194 . 2003Chaos..13.1010N .
  20. Jäger . D. . Baumann . H. . Symanczyk . R. . Experimental observation of spatial structures due to current filament formation in silicon pin diodes . Physics Letters A . Elsevier BV . 117 . 3 . 1986 . 0375-9601 . 10.1016/0375-9601(86)90021-6 . 141–144. 1986PhLA..117..141J .
  21. Mayer . K. M. . Parisi . J. . Huebener . R. P. . Imaging of self-generated multifilamentary current patterns in GaAs . Zeitschrift für Physik B . Springer Science and Business Media . 71 . 2 . 1988 . 0722-3277 . 10.1007/bf01312786 . 171–178. 1988ZPhyB..71..171M . 121227300 .
  22. Niedernostheide . F.-J. . Arps . M. . Dohmen . R. . Willebrand . H. . Purwins . H.-G. . Spatial and Spatio-Temporal Patterns in pnpn Semiconductor Devices . Physica Status Solidi B . Wiley . 172 . 1 . 1 June 1992 . 0370-1972 . 10.1002/pssb.2221720123 . 249–266 . de. 1992PSSBR.172..249N .
  23. Beale . Marc . Uniform and filamentary transport in d.c. thin-film ZnS: Mn electroluminescent devices . Philosophical Magazine B . Informa UK Limited . 68 . 5 . 1993 . 1364-2812 . 10.1080/13642819308220144 . 573–594. 1993PMagB..68..573B .
  24. Taranenko . V. B. . Staliunas . K. . Weiss . C. O. . Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator . Physical Review A . American Physical Society . 56 . 2 . 1 July 1997 . 1050-2947 . 10.1103/physreva.56.1582 . 1582–1591. 1997PhRvA..56.1582T .
  25. Taranenko . V. B. . Staliunas . K. . Weiss . C. O. . Pattern Formation and Localized Structures in Degenerate Optical Parametric Mixing . Physical Review Letters . American Physical Society . 81 . 11 . 14 September 1998 . 0031-9007 . 10.1103/physrevlett.81.2236 . 2236–2239. 1998PhRvL..81.2236T .
  26. Schreiber . A. . Thüring . B. . Kreuzer . M. . Tschudi . T. . Experimental investigation of solitary structures in a nonlinear optical feedback system . Optics Communications . Elsevier BV . 136 . 5–6 . 1997 . 0030-4018 . 10.1016/s0030-4018(96)00722-5 . 415–418. 1997OptCo.136..415S .
  27. Schäpers . B. . Feldmann . M. . Ackemann . T. . Lange . W. . Interaction of Localized Structures in an Optical Pattern-Forming System . Physical Review Letters . American Physical Society . 85 . 4 . 24 July 2000 . 0031-9007 . 10.1103/physrevlett.85.748 . 748–751. 10991389 . 2000PhRvL..85..748S .
  28. Book: Denz . Cornelia . Cornelia Denz. Schwab . Michael . Weilnau . Carsten . Transverse-Pattern Formation in Photorefractive Optics . Springer Tracts in Modern Physics. Springer Berlin Heidelberg . Berlin, Heidelberg . 2003 . 978-3-540-02109-4 . 0081-3869 . 10.1007/b13583 . 188.
  29. Barland . Stephane . Tredicce . Jorge R. . Brambilla . Massimo . Lugiato . Luigi A. . Balle . Salvador . Giudici . Massimo . Maggipinto . Tommaso . Spinelli . Lorenzo . Tissoni . Giovanna . Knödl . Thomas . Miller . Michael . Jäger . Roland . Cavity solitons as pixels in semiconductor microcavities . Nature . Springer Nature . 419 . 6908 . 2002 . 0028-0836 . 10.1038/nature01049 . 12384692 . 699–702. 5. 2002Natur.419..699B . 4404010 .
  30. Zhang . H. . Tang . D. Y. . Zhao . L. M. . Wu . X. . Tam . H. Y. . Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion . Optics Express . The Optical Society . 17 . 2 . 6 January 2009 . 455–60 . 1094-4087 . 10.1364/oe.17.000455 . 19158858 . free. 2009OExpr..17..455Z .
  31. Zhang . H. . Tang . D. Y. . Wu . X. . Zhao . L. M. . Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser . Optics Express . The Optical Society . 17 . 15 . 20 July 2009 . 12692–7 . 1094-4087 . 10.1364/oe.17.012692 . 19654674 . free. 2009OExpr..1712692Z . 0907.1782 .
  32. Hamik . Chad T. . Manz . Niklas . Steinbock . Oliver . Anomalous Dispersion and Attractive Pulse Interaction in the 1,4-Cyclohexanedione Belousov−Zhabotinsky Reaction† . The Journal of Physical Chemistry A . American Chemical Society . 105 . 25 . 2001 . 1089-5639 . 10.1021/jp010270j . 6144–6153.
  33. Lane . Samuel L. . Luss . Dan . Rotating temperature pulse during hydrogen oxidation on a nickel ring . Physical Review Letters . American Physical Society . 70 . 6 . 8 February 1993 . 0031-9007 . 10.1103/physrevlett.70.830 . 830–832. 10054214 . 1993PhRvL..70..830L .
  34. Rotermund . H. H. . Jakubith . S. . von Oertzen . A. . Ertl . G. . Solitons in a surface reaction . Physical Review Letters . American Physical Society . 66 . 23 . 10 June 1991 . 0031-9007 . 10.1103/physrevlett.66.3083 . 3083–3086. 10043694 . 1991PhRvL..66.3083R .
  35. R. Suzuki, Adv. Biophys. 9 (1976): 115
  36. Dahlem . Markus A. . Hadjikhani . Nouchine . Ben-Jacob . Eshel . Migraine Aura: Retracting Particle-Like Waves in Weakly Susceptible Cortex . PLOS ONE . Public Library of Science . 4 . 4 . 1 March 2009 . 1932-6203 . 10.1371/journal.pone.0005007 . e5007. 19337363. 2659426 . 2009PLoSO...4.5007D . free .
  37. Umbanhowar . Paul B. . Melo . Francisco . Swinney . Harry L. . Localized excitations in a vertically vibrated granular layer . Nature . Springer Nature . 382 . 6594 . 1996 . 0028-0836 . 10.1038/382793a0 . 793–796. 1996Natur.382..793U . 4338010 .
  38. Lioubashevski . O. . Hamiel . Y. . Agnon . A. . Reches . Z. . Fineberg . J. . Oscillons and Propagating Solitary Waves in a Vertically Vibrated Colloidal Suspension . Physical Review Letters . American Physical Society . 83 . 16 . 18 October 1999 . 0031-9007 . 10.1103/physrevlett.83.3190 . 3190–3193. 1999PhRvL..83.3190L .
  39. Lioubashevski . O. . Arbell . H. . Fineberg . J. . Dissipative Solitary States in Driven Surface Waves . Physical Review Letters . American Physical Society . 76 . 21 . 20 May 1996 . 0031-9007 . 10.1103/physrevlett.76.3959 . 10061156 . 3959–3962. 1996PhRvL..76.3959L .
  40. Ahlers . Guenter . Experiments with pattern-forming systems . Physica D: Nonlinear Phenomena . Elsevier BV . 51 . 1–3 . 1991 . 0167-2789 . 10.1016/0167-2789(91)90249-9 . 421–443. 1991PhyD...51..421A .
  41. Melo . F. . Douady . S. . From solitary waves to static patterns via spatiotemporal intermittency . Physical Review Letters . American Physical Society . 71 . 20 . 15 November 1993 . 0031-9007 . 10.1103/physrevlett.71.3283 . 3283–3286. 10054934 . 1993PhRvL..71.3283M .
  42. J. Nagumo et al., Proc. Inst. Radio Engin. Electr. 50 (1962): 2061
  43. Book: Purwins . H.-G. . Bödeker . H.U. . Liehr . A.W. . Dissipative Solitons . Dissipative Solitons in Reaction-Diffusion Systems . Lecture Notes on Physics. 661. Springer Berlin Heidelberg . Berlin, Heidelberg . 978-3-540-23373-2 . 10.1007/10928028_11 . 267–308. 2004.
  44. Meron . Ehud . Pattern formation in excitable media . Physics Reports . Elsevier BV . 218 . 1 . 1992 . 0370-1573 . 10.1016/0370-1573(92)90098-k . 1–66. 1992PhR...218....1M .
  45. Book: Niedernostheide . F.-J. . Dohmen . R. . Willebrand . H. . Schulze . H.-J. . Purwins . H.-G. . Springer Proceedings in Physics . 67. Nonlinearity with disorder. Pattern Formation in Nonlinear Physical Systems with Characteristic Electric Properties . Springer Berlin Heidelberg . Berlin, Heidelberg . 1992 . 978-3-642-84776-9 . 0930-8989 . 10.1007/978-3-642-84774-5_29 . 282–309.
  46. Gurevich . S. V. . Amiranashvili . Sh. . Purwins . H.-G. . Breathing dissipative solitons in three-component reaction-diffusion system . Physical Review E . American Physical Society . 74 . 6 . 1 November 2006 . 1539-3755 . 10.1103/physreve.74.066201 . 066201. 17280133 . 2006PhRvE..74f6201G .
  47. Or-Guil . Michal . G. Kevrekidis . Ioannis . Bär . Markus . Stable bound states of pulses in an excitable medium . Physica D: Nonlinear Phenomena . Elsevier BV . 135 . 1–2 . 2000 . 0167-2789 . 10.1016/s0167-2789(99)00136-0 . 154–174. 2000PhyD..135..154O .
  48. Schenk . C. P. . Or-Guil . M. . Bode . M. . Purwins . H.-G. . Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains . Physical Review Letters . American Physical Society . 78 . 19 . 12 May 1997 . 0031-9007 . 10.1103/physrevlett.78.3781 . 3781–3784. 1997PhRvL..78.3781S .
  49. Aranson . Igor S. . Kramer . Lorenz . The world of the complex Ginzburg-Landau equation . Reviews of Modern Physics . American Physical Society . 74 . 1 . 4 February 2002 . 0034-6861 . 10.1103/revmodphys.74.99 . 99–143. 2002RvMP...74...99A . cond-mat/0106115 . 53142414 .
  50. Afanasjev . V. V. . Akhmediev . N. . Soto-Crespo . J. M. . Three forms of localized solutions of the quintic complex Ginzburg-Landau equation . Physical Review E . American Physical Society . 53 . 2 . 1 January 1996 . 1063-651X . 10.1103/physreve.53.1931 . 9964456 . 1931–1939. 1996PhRvE..53.1931A . 10261/60458 . free .
  51. Rosanov . N. N. . Fedorov . S. V. . Shatsev . A. N. . Motion of clusters of weakly coupled two-dimensional cavity solitons . Journal of Experimental and Theoretical Physics . Pleiades Publishing . 102 . 4 . 2006 . 1063-7761 . 10.1134/s1063776106040030 . 547–555. 2006JETP..102..547R . 59290663 .
  52. Crasovan . L.-C. . Malomed . B. A. . Mihalache . D. . Stable vortex solitons in the two-dimensional Ginzburg-Landau equation . Physical Review E . American Physical Society . 63 . 1 . 20 December 2000 . 1063-651X . 10.1103/physreve.63.016605 . 016605. 11304376 . 2000PhRvE..63a6605C .
  53. Soto-Crespo . J. M. . Akhmediev . N. . Ankiewicz . A. . Pulsating, Creeping, and Erupting Solitons in Dissipative Systems . Physical Review Letters . American Physical Society . 85 . 14 . 2 October 2000 . 0031-9007 . 10.1103/physrevlett.85.2937 . 2937–2940. 11005972 . 2000PhRvL..85.2937S . 10261/54305 . free .
  54. Soto-Crespo . J. M. . Akhmediev . Nail . Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation . Physical Review E . American Physical Society . 66 . 6 . 18 December 2002 . 1063-651X . 10.1103/physreve.66.066610 . 12513432 . 066610. 2002PhRvE..66f6610S . 10261/60258 . free .
  55. Sakaguchi . Hidetsugu . Brand . Helmut R. . Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation . Physica D: Nonlinear Phenomena . Elsevier BV . 97 . 1–3 . 1996 . 0167-2789 . 10.1016/0167-2789(96)00077-2 . 274–285. 1996PhyD...97..274S .
  56. Sakaguchi . Hidetsugu . Brand . Helmut R. . Localized patterns for the quintic complex Swift-Hohenberg equation . Physica D: Nonlinear Phenomena . Elsevier BV . 117 . 1–4 . 1998 . 0167-2789 . 10.1016/s0167-2789(97)00310-2 . 95–105. 1998PhyD..117...95S .
  57. Book: Friedrich, Rudolf . Collective Dynamics of Nonlinear and Disordered Systems . Group Theoretic Methods in the Theory of Pattern Formation . Springer-Verlag . Berlin/Heidelberg . 3-540-21383-X . 10.1007/3-540-26869-3_4 . 61–84 . 2005 . https://archive.org/details/collectivedynami0000unse/page/61 .
  58. Bode . M . Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions . Physica D: Nonlinear Phenomena . Elsevier BV . 106 . 3–4 . 1997 . 0167-2789 . 10.1016/s0167-2789(97)00050-x . 270–286. 1997PhyD..106..270B .
  59. Bode . M. . Liehr . A.W. . Schenk . C.P. . Purwins . H.-G. . Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system . Physica D: Nonlinear Phenomena . Elsevier BV . 161 . 1–2 . 2002 . 0167-2789 . 10.1016/s0167-2789(01)00360-8 . 45–66. 2002PhyD..161...45B .
  60. Bödeker . H. U. . Röttger . M. C. . Liehr . A. W. . Frank . T. D. . Friedrich . R. . Purwins . H.-G. . Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system . Physical Review E . American Physical Society . 67 . 5 . 28 May 2003 . 1063-651X . 10.1103/physreve.67.056220 . 12786263 . 056220. 2003PhRvE..67e6220B .
  61. Bödeker . H U . Liehr . A W . Frank . T D . Friedrich . R . Purwins . H-G . Measuring the interaction law of dissipative solitons . New Journal of Physics . IOP Publishing . 6 . 1 . 15 June 2004 . 1367-2630 . 10.1088/1367-2630/6/1/062 . 62. free. 2004NJPh....6...62B .
  62. http://www.livescience.com/technology/050614_baby_waves.html