In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
A subset
S
X
S
a
b,
|a|+|b|\leq1
aS+bS\subseteqS.
a,b,
c,
|a|+|b|\leq|c|,
aS+bS\subseteqcS.
a1,\ldots,an
c,
|a1|+ … +|an|\leq|c|
a1S+ … +anS\subseteqcS.
a1,\ldots,an,
|a1|+ … +|an|\leq1
a1S+ … +anS\subseteqS.
The smallest convex (respectively, balanced) subset of
X
\operatorname{co}S
\operatorname{bal}S
Similarly, the , the , and the of a set
S
S.
S
\operatorname{disk}S
\operatorname{cobal}S
\operatorname{co}(\operatorname{bal}S),
S
\operatorname{cobal}S=\operatorname{co}(\operatorname{bal}S).
\operatorname{cobal}S ≠ \operatorname{bal}(\operatorname{co}S)
S.
\left\{a1s1+ … ansn~:~n\in\N,s1,\ldots,sn\inS,anda1,\ldots,anarescalarssatisfying|a1|+ … +|an|\leq1\right\}.
The intersection of arbitrarily many absolutely convex sets is again absolutely convex; however, unions of absolutely convex sets need not be absolutely convex anymore.
If
D
X,
D
X
\operatorname{span}D=X.
If
S
X
E
X
E+E\subseteqS.
D
r
s
sD=|s|D
(rD)\cap(sD)=(min\{|r|,|s|\})D.
The absolutely convex hull of a bounded set in a locally convex topological vector space is again bounded.
If
D
X
x\bull=\left(xi\right)
infty | |
i=1 |
D,
s\bull=\left(sn\right)
infty | |
n=1 |
n,
sn:=
n | |
\sum | |
i=1 |
2-ixi.
D
X,
s\bull
X
D.
The convex balanced hull of
S
S
S.
S;
S,T\subseteqX,
S\subseteqT
\operatorname{cobal}S\subseteq\operatorname{cobal}T
\operatorname{cobal}(\operatorname{co}S)=\operatorname{cobal}S=\operatorname{cobal}(\operatorname{bal}S).
Although
\operatorname{cobal}S=\operatorname{co}(\operatorname{bal}S),
S
S.
\operatorname{cobal}S ≠ \operatorname{bal}(\operatorname{co}S)
X
\R2
S:=\{(-1,1),(1,1)\}.
\operatorname{bal}(\operatorname{co}S)
\operatorname{cobal}S
\operatorname{cobal}S
X
(-1,1),(1,1),(-1,-1),
(1,-1)
\operatorname{cobal}S
S
-S=\{(-1,-1),(1,-1)\},
\operatorname{cobal}S
\operatorname{co}((-S)\cupS),
\operatorname{cobal}S=\operatorname{co}((-S)\cupS)
\operatorname{co}(S)
S
\operatorname{bal}(\operatorname{co}S)
x
S
-S=\{(-1,-1),(1,-1)\}.
\operatorname{bal}(\operatorname{co}S)
\operatorname{cobal}S=\operatorname{co}(\operatorname{bal}S).
Given a fixed real number
0<p\leq1,
C
X
rc+sd\inC
c,d\inC
r,s\geq0
rp+sp=1.
rc+sd\inC
c,d\inC
r,s
|r|p+|s|p\leq1.
A is any non-negative function
q:X\to\R
q(x+y)\leqq(x)+q(y)
x,y\inX.
p
q(sx)=|s|pq(x)
x\inX
s.
This generalizes the definition of seminorms since a map is a seminorm if and only if it is a
1
p:=1
p
0<p<1
q(f)=\int\R|f(t)|pdt
Lp(\R)
p
Given
0<p\leq1,
p
p