Dielectric strength explained

In physics, the term dielectric strength has the following meanings:

The theoretical dielectric strength of a material is an intrinsic property of the bulk material, and is independent of the configuration of the material or the electrodes with which the field is applied. This "intrinsic dielectric strength" corresponds to what would be measured using pure materials under ideal laboratory conditions. At breakdown, the electric field frees bound electrons. If the applied electric field is sufficiently high, free electrons from background radiation may be accelerated to velocities that can liberate additional electrons by collisions with neutral atoms or molecules, in a process known as avalanche breakdown. Breakdown occurs quite abruptly (typically in nanoseconds), resulting in the formation of an electrically conductive path and a disruptive discharge through the material. In a solid material, a breakdown event severely degrades, or even destroys, its insulating capability.

Electrical breakdown

Electric current is a flow of electrically charged particles in a material caused by an electric field. The mobile charged particles responsible for electric current are called charge carriers. In different substances different particles serve as charge carriers: in metals and other solids some of the outer electrons of each atom (conduction electrons) are able to move about the material; in electrolytes and plasma it is ions, electrically charged atoms or molecules, and electrons. A substance that has a high concentration of charge carriers available for conduction will conduct a large current with the given electric field created by a given voltage applied across it, and thus has a low electrical resistivity; this is called an electrical conductor. A material that has few charge carriers will conduct very little current with a given electric field and has a high resistivity; this is called an electrical insulator.

However, when a large enough electric field is applied to any insulating substance, at a certain field strength the concentration of charge carriers in the material suddenly increases by many orders of magnitude, so its resistance drops and it becomes a conductor. This is called electrical breakdown. The physical mechanism causing breakdown differs in different substances. In a solid, it usually occurs when the electric field becomes strong enough to pull outer valence electrons away from their atoms, so they become mobile. The field strength at which break down occurs is an intrinsic property of the material called its dielectric strength.

In practical electric circuits electrical breakdown is often an unwanted occurrence, a failure of insulating material causing a short circuit, resulting in a catastrophic failure of the equipment. The sudden drop in resistance causes a high current to flow through the material, and the sudden extreme Joule heating may cause the material or other parts of the circuit to melt or vaporize explosively. However, breakdown itself is reversible. If the current supplied by the external circuit is sufficiently limited, no damage is done to the material, and reducing the applied voltage causes a transition back to the material's insulating state.

Factors affecting apparent dielectric strength

Break down field strength

The field strength at which break down occurs depends on the respective geometries of the dielectric (insulator) and the electrodes with which the electric field is applied, as well as the rate of increase of the applied electric field. Because dielectric materials usually contain minute defects, the practical dielectric strength will be a significantly less than the intrinsic dielectric strength of an ideal, defect-free, material. Dielectric films tend to exhibit greater dielectric strength than thicker samples of the same material. For instance, the dielectric strength of silicon dioxide films of thickness around 1 μm is about 0.5GV/m.[3] However very thin layers (below, say,) become partially conductive because of electron tunneling. Multiple layers of thin dielectric films are used where maximum practical dielectric strength is required, such as high voltage capacitors and pulse transformers. Since the dielectric strength of gases varies depending on the shape and configuration of the electrodes,[4] it is usually measured as a fraction of the dielectric strength of nitrogen gas.

Dielectric strength (in MV/m, or 10⋅volt/meter) of various common materials:

Substancedata-sort-type=number Dielectric strength
(MV/m) or (Volts/micron)
Helium (relative to nitrogen)[5]
Air[6]

[7]

Sulfur hexafluoride8.5–9.8
Alumina
Window glass 9.8–13.8
Borosilicate glass 20–40
Silicone oil, mineral oil[8] 10–15
Benzene
Polystyrene
Polyethylene[9] 19–160
Neoprene rubber 15.7–26.7
Distilled water 65–70
Beryllium oxide[10] 27–31
High vacuum (200 μPa)
(field emission limited)[11]
20–40
(depends on electrode shape)
Fused silica 470–670
Waxed paper[12] 40–60
PTFE (Teflon, extruded)
PTFE (Teflon, insulating film)[13] 60–173
PEEK (Polyether ether ketone)
Mica
Diamond[14]
PZT 10–25[15] [16]
Perfect vacuum 1012[17] [18]

Units

In SI, the unit of dielectric strength is volts per meter (V/m). It is also common to see related units such as volts per centimeter (V/cm), megavolts per meter (MV/m), and so on.

In United States customary units, dielectric strength is often specified in volts per mil (a mil is 1/1000 inch).[19] The conversion is:

\begin{align} 1V/mil&=3.94 x 104V/m\\ 1V/m&=2.54 x 10-5V/mil \end{align}

See also

External links

Notes and References

  1. Web site: DuPont Teijin Films. Mylar polyester film . 2003 .
  2. Durchschlagfeldstärke des homogenen Feldes in Luft . 1932 . 10.1007/BF01657189 . 26 . 4 . Archiv für Elektrotechnik . 219–232. Ritz . Hans . 108697400 .
  3. Electrical insulation properties of sputter-deposited SiO2, Si3N4 and Al2O3 films at room temperature and 400 °C . 2009-01-21 . 10.1002/pssa.200880481 . 206 . 3 . Physica Status Solidi A . 514–519 . 2009PSSAR.206..514B. Bartzsch. Hagen. Glöß . Daniel . Frach . Peter . Gittner . Matthias . Schultheiß . Eberhard . Brode . Wolfgang . Hartung . Johannes . 93228294 .
  4. Lyon . David . et al. . Gap size dependence of the dielectric strength in nano vacuum gaps . IEEE . 20 . 4 . 1467–1471 . 2013 . 10.1109/TDEI.2013.6571470. 709782 .
  5. CRC Handbook of Chemistry and Physics
  6. Web site: Dielectric Strength of Air. Alice. Hong. 2000. The Physics Factbook. Elert. Glenn. 2020-06-18.
  7. Web site: Unveiling the Magic of Air. 2024-04-27.
  8. Web site: Föll . H. . 3.5.1 Electrical Breakdown and Failure . Tf.uni-kiel.de . 2020-06-18.
  9. Web site: Dielectric strength of polyethylene. Cherry. Xu. 2009. The Physics Factbook. Elert. Glenn. 2020-06-18.
  10. "Azom Materials - Beryllium Oxide Properties". azom.com. Retrieved 2023-12-05.
  11. 20th International Symposium on Discharges and Electrical Insulation in Vacuum . HV dielectric strength of shielding electrodes in vacuum circuit-breakers . Giere . Stefan . Kurrat . Michael . Schümann . Ulf . 2020-06-18 . https://web.archive.org/web/20120301112907/http://www.htee.tu-bs.de/forschung/veroeffentlichungen/giere2002.pdf . 2012-03-01 . dead .
  12. Web site: Dielectric strength of waxed paper. Dasha. Mulyakhova. 2007. The Physics Factbook. Elert. Glenn. 2020-06-18.
  13. Web site: Glenn Elert . Dielectrics - The Physics Hypertextbook . Physics.info . 2020-06-18.
  14. Web site: Electronic properties of diamond. el.angstrom.uu.se. 2013-08-10.
  15. Electrical Characteristics of Ferroelectric PZT Thin Films for DRAM Applications . Moazzami . Reza . Chenming Hu . William H. Shepherd . IEEE Transactions on Electron Devices . September 1992 . 39 . 9 . 2044 . 1992ITED...39.2044M . 10.1109/16.155876.
  16. Performance of Piezoelectric Ceramic Multilayer Components Based on Hard and Soft PZT . B. Andersen . E. Ringgaard . T. Bove . A. Albareda . R. Pérez . amp . Proceedings of Actuator 2000 . 2000 . 419–422.
  17. Buchanan . Mark . Past the Schwinger limit . Nature Physics . November 2006 . 2 . 11 . 721–721 . 10.1038/nphys448.
  18. Q27447776 . On the Schwinger limit attainability with extreme power lasers . Phys. Rev. Lett. . 105 . 2010 . 105 . 22 . 220407 . 10.1103/PhysRevLett.105.220407 . 21231373 . 1007.4306 . 36857911.
  19. For one of many examples, see Polyimides: materials, processing and applications, by A.J. Kirby, google books link