SI derived unit explained

SI derived units are units of measurement derived from theseven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities.SI coherent derived units involve only a trivial proportionality factor, not requiring conversion factors.

The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m2), the SI derived unit of area; and the kilogram per cubic metre (kg/m3 or kg⋅m−3), the SI derived unit of density.

The names of SI coherent derived units, when written in full, are always in lowercase. However, the symbols for units named after persons are written with an uppercase initial letter. For example, the symbol for hertz is "Hz", while the symbol for metre is "m".[1]

Special names

The International System of Units assigns special names to 22 derived units, which includes two dimensionless derived units, the radian (rad) and the steradian (sr).

Named units derived from SI base units
NameSymbolQuantityEquivalentsSI base unit
Equivalents
hertzHzfrequency1/ss−1
radianradanglem/m1
steradiansrsolid anglem2/m21
newtonNforce, weightkg⋅m/s2kg⋅m⋅s−2
pascalPapressure, stressN/m2kg⋅m−1⋅s−2
jouleJenergy, work, heatm⋅N, C⋅V, W⋅skg⋅m2⋅s−2
wattWpower, radiant fluxJ/s, V⋅Akg⋅m2⋅s−3
coulombCelectric charge or quantity of electricitys⋅A, F⋅Vs⋅A
voltVvoltage, electrical potential difference, electromotive forceW/A, J/Ckg⋅m2⋅s−3⋅A−1
faradFelectrical capacitanceC/V, s/Ωkg−1⋅m−2⋅s4⋅A2
ohmΩelectrical resistance, impedance, reactance1/S, V/Akg⋅m2⋅s−3⋅A−2
siemensSelectrical conductance1/Ω, A/Vkg−1⋅m−2⋅s3⋅A2
weberWbmagnetic fluxJ/A, T⋅m2,V⋅skg⋅m2⋅s−2⋅A−1
teslaTmagnetic induction, magnetic flux densityV⋅s/m2, Wb/m2, N/(A⋅m) kg⋅s−2⋅A−1
henryHelectrical inductanceV⋅s/A, Ω⋅s, Wb/Akg⋅m2⋅s−2⋅A−2
degree Celsius°Ctemperature relative to 273.15 KKK
lumenlmcd⋅srcd
luxlxilluminancelm/m2cd⋅m−2
becquerelBqradioactivity (decays per unit time)1/ss−1
grayGyabsorbed dose (of ionizing radiation)J/kgm2⋅s−2
sievertSvequivalent dose (of ionizing radiation)J/kgm2⋅s−2
katalkatcatalytic activitymol/ss−1⋅mol.

By field of application

Kinematics

NameSymbolQuantityExpression in terms
of SI base units
m/sm⋅s−1
m/s2m⋅s−2
metre per second cubed m/s3m⋅s−3
metre per second to the fourth m/s4m⋅s−4
rad/ss−1
rad/s2s−2
hertz per second Hz/ss−2
m3/sm3⋅s−1

Mechanics

NameSymbolQuantityExpression in terms
of SI base units
m2m2
m3m3
N⋅sm⋅kg⋅s−1
newton metre second N⋅m⋅sm2⋅kg⋅s−1
N⋅m = J/radm2⋅kg⋅s−2
newton per second N/sm⋅kg⋅s−3
m−1m−1
kilogram per square metre kg/m2m−2⋅kg
kg/m3density, mass density m−3⋅kg
cubic metre per kilogram m3/kgm3⋅kg−1
J⋅sm2⋅kg⋅s−1
joule per kilogram J/kgm2⋅s−2
joule per cubic metre J/m3m−1⋅kg⋅s−2
newton per metre N/m = J/m2kg⋅s−2
watt per square metre W/m2kg⋅s−3
square metre per second m2/skinematic viscosity, thermal diffusivity, diffusion coefficientm2⋅s−1
Pa⋅s = N⋅s/m2m−1⋅kg⋅s−1
kilogram per metre kg/mm−1⋅kg
kilogram per second kg/skg⋅s−1
watt per steradian square metre W/(sr⋅m2)kg⋅s−3
watt per steradian cubic metre W/(sr⋅m3)m−1⋅kg⋅s−3
watt per metre W/mm⋅kg⋅s−3
gray per second Gy/sabsorbed dose rate m2⋅s−3
metre per cubic metre m/m3m−2
watt per cubic metre W/m3m−1⋅kg⋅s−3
joule per square metre second J/(m2⋅s)kg⋅s−3
reciprocal pascal Pa−1m⋅kg−1⋅s2
joule per square metre J/m2kg⋅s−2
kilogram square metre kg⋅m2m2⋅kg
newton metre second per kilogram N⋅m⋅s/kgm2⋅s−1
watt per steradian W/srm2⋅kg⋅s−3
watt per steradian metre W/(sr⋅m)m⋅kg⋅s−3

Chemistry

NameSymbolQuantityExpression in terms
of SI base units
mole per cubic metre mol/m3molarity, amount of substance concentration m−3⋅mol
m3/molm3⋅mol−1
joule per kelvin mole J/(K⋅mol)molar heat capacity, molar entropym2⋅kg⋅s−2⋅K−1⋅mol−1
J/molmolar energy m2⋅kg⋅s−2⋅mol−1
siemens square metre per mole S⋅m2/molkg−1⋅s3⋅A2⋅mol−1
mole per kilogram mol/kgkg−1⋅mol
kilogram per mole kg/molkg⋅mol−1
cubic metre per mole second m3/(mol⋅s)m3⋅s−1⋅mol−1

Electromagnetics

NameSymbolQuantityExpression in terms
of SI base units
coulomb per square metre C/m2m−2⋅s⋅A
coulomb per cubic metre C/m3m−3⋅s⋅A
ampere per square metre A/m2m−2⋅A
S/melectrical conductivitym−3⋅kg−1⋅s3⋅A2
farad per metre F/mm−3⋅kg−1⋅s4⋅A2
henry per metre H/mm⋅kg⋅s−2⋅A−2
volt per metre V/melectric field strength m⋅kg⋅s−3⋅A−1
ampere per metre A/mmagnetization, magnetic field strength m−1⋅A
coulomb per kilogram C/kgexposure (X and gamma rays) kg−1⋅s⋅A
Ω⋅mm3⋅kg⋅s−3⋅A−2
coulomb per metre C/mm−1⋅s⋅A
joule per tesla J/Tm2⋅A
square metre per volt second m2/(V⋅s)kg−1⋅s2⋅A
reciprocal henry H−1m−2⋅kg−1⋅s2⋅A2
weber per metre Wb/mm⋅kg⋅s−2⋅A−1
weber metre Wb⋅mm3⋅kg⋅s−2⋅A−1
tesla metre T⋅mm⋅kg⋅s−2⋅A−1
ampere radian A⋅radA
metre per henry m/Hm−1⋅kg−1⋅s2⋅A2

Photometry

NameSymbolQuantityExpression in terms
of SI base units
lm⋅ss⋅cd
lx⋅sm−2⋅s⋅cd
cd/m2m−2⋅cd
lumen per watt lm/Wm−2⋅kg−1⋅s3⋅cd

Thermodynamics

NameSymbolQuantityExpression in terms
of SI base units
joule per kelvin J/Km2⋅kg⋅s−2⋅K−1
joule per kilogram kelvin J/(K⋅kg)specific heat capacity, specific entropym2⋅s−2⋅K−1
watt per metre kelvin W/(m⋅K)thermal conductivitym⋅kg⋅s−3⋅K−1
kelvin per watt K/Wm−2⋅kg−1⋅s3⋅K
reciprocal kelvin K−1K−1
kelvin per metre K/mm−1⋅K

Other units used with SI

Some other units such as the hour, litre, tonne, bar, and electronvolt are not SI units, but are widely used in conjunction with SI units.

Supplementary units

Until 1995, the SI classified the radian and the steradian as supplementary units, but this designation was abandoned and the units were grouped as derived units.[2]

See also

Bibliography

Notes and References

  1. Special Publication 811. Curt. Suplee. Nist . 2 July 2009.
  2. Web site: Resolution 8 of the CGPM at its 20th Meeting (1995) . 2014-09-23 . Bureau International des Poids et Mesures.