Deoxyuridine monophosphate explained

Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide.

It is an intermediate in the metabolism of deoxyribonucleotides.

Biosynthesis

Deoxyuridine monophosphate (dUMP) is the deoxygenated form of uridine monophosphate (UMP), and is the precursor to deoxythymidine monophosphate (dTMP), a component of DNA nucleotide biosynthesis.[1] By replacing the hydroxyl group at the 2' carbon of ribose with a hydrogen, UMP becomes deoxygenated to dUMP.

The synthesis of deoxyuridine monophosphate (dUMP) is a multi-step process that begins with uridine monophosphate (UMP), the product of pyrimidine biosynthesis.[2] The enzyme nucleoside monophosphate kinase converts UMP and ATP to uridine diphosphate (UDP) and ADP.

In the presence of excess ATP, the enzyme ribonucleotide reductase initiates a chain reaction with UDP, which catalyzes the formation of deoxyuridine diphosphate (dUDP), which is then converted to deoxyuridine triphosphate (dUTP), then deoxyuridine monophosphate (dUMP) via the addition or removal of phosphate groups.[3]

See also

Notes and References

  1. Book: Berg, J. M.. Biochemistry. Tymoczko. J. L.. Stryer. L.. W H Freeman. 2002. 978-1-4641-2610-9. 5th. New York.
  2. Shambaugh. G. E.. June 1979. Pyrimidine biosynthesis. The American Journal of Clinical Nutrition. 32. 6. 1290–1297. 10.1093/ajcn/32.6.1290. 35970.
  3. Book: Garrett, Reginald H.. Biochemistry. Grisham. Charles M.. Brooks/Cole, Cengage Learning. 2013. 9781133106296. 6th. Belmont, CA. 949.