Deltoidal hexecontahedron explained

bgcolor=#e7dcc3 colspan=2Deltoidal hexecontahedron
align=center colspan=2
(Click here for rotating model)
TypeCatalan
Conway notationoD or deD
Coxeter diagram
Face polygon
kite
Faces60
Edges120
Vertices62 = 12 + 20 + 30
Face configurationV3.4.5.4
Symmetry groupIh, H3, [5,3], (*532)
Rotation groupI, [5,3]+, (532)
Dihedral angle154.1214° arccos
Propertiesconvex, face-transitive
valign=top align=center
rhombicosidodecahedron
(dual polyhedron)

Net
In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron[1]) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.[2]

It is topologically identical to the nonconvex rhombic hexecontahedron.

Lengths and angles

The 60 faces are deltoids or kites. The short and long edges of each kite are in the ratio 1: ≈ 1:1.539344663...

The angle between two short edges in a single face is arccos≈118.2686774705°. The opposite angle, between long edges, is arccos≈67.783011547435° . The other two angles of each face, between a short and a long edge each, are both equal to arccos≈86.97415549104°.

The dihedral angle between any pair of adjacent faces is arccos≈154.12136312578°.

Topology

Topologically, the deltoidal hexecontahedron is identical to the nonconvex rhombic hexecontahedron. The deltoidal hexecontahedron can be derived from a dodecahedron (or icosahedron) by pushing the face centers, edge centers and vertices out to different radii from the body center. The radii are chosen so that the resulting shape has planar kite faces each such that vertices go to degree-3 corners, faces to degree-five corners, and edge centers to degree-four points.

Cartesian coordinates

The 62 vertices of the disdyakis triacontahedron fall in three sets centered on the origin:

3
11

\sqrt{15-

6
\sqrt{5
}}\approx 0.9571 scaled regular dodecahedron.

3\sqrt{1-

2
\sqrt{5
}}\approx0.9748 scaled Icosidodecahedron.

These hulls are visualized in the figure below:

Orthogonal projections

The deltoidal hexecontahedron has 3 symmetry positions located on the 3 types of vertices:

Variations

The deltoidal hexecontahedron can be constructed from either the regular icosahedron or regular dodecahedron by adding vertices mid-edge, and mid-face, and creating new edges from each edge center to the face centers. Conway polyhedron notation would give these as oI, and oD, ortho-icosahedron, and ortho-dodecahedron. These geometric variations exist as a continuum along one degree of freedom.

Related polyhedra and tilings

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an icosahedron and dodecahedron arranged in their dual positions.

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

See also

References

External links

Notes and References

  1. Conway, Symmetries of things, p.284-286
  2. Web site: Archimedean Dual Graph.